"STOCHASTIC PROCESSES" – HOMEWORK SHEET 1

Exercise 1.1. (12 Points)

(a) Let Ω be a state space, and let (\mathcal{F}_i) be an arbitrary family of σ -algebra on Ω . Show that

 $\mathcal{F} = \bigcap \mathcal{F}_i = \{ A \subseteq \Omega \colon A \in \mathcal{F}_i \text{ for all } i \},\$

is a σ -algebra. Conclude that for a collection C of subsets of Ω ,

 $\sigma(\mathcal{C}) := \bigcap \left\{ \mathcal{F} \colon \mathcal{F} \text{ is a } \sigma \text{-algebra with } \mathcal{C} \subseteq \mathcal{F} \right\},\$

is the unique smallest σ -algebra containing C.

(b) Give an example where the union of two σ -algebras is not a σ -algebra.

(c) Let $\Omega = \mathbb{R}$, and $\mathcal{F} = \mathcal{B}(\mathbb{R})$ the Borel σ -algebra of \mathbb{R} , that is, the σ -algebra generated by the collection $\{O: O \text{ open set in } \mathbb{R}\}$. It holds that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C}_i)$ for each i = 0, ..., 17 where

 $\begin{array}{lll} \mathcal{C}_{0} = \{O: \ O \ open \ subset \ of \ \mathbb{R}\} & \mathcal{C}_{1} = \{F: \ F \ closed \ subset \ of \ \mathbb{R}\} \\ \mathcal{C}_{2} = \{]a, b[: \ a \le b \ with \ a, b \in \ \mathbb{R}\} & \mathcal{C}_{3} = \{[a, b]: \ a \le b \ with \ a, b \in \ \mathbb{R}\} \\ \mathcal{C}_{4} = \{]a, b]: \ a \le b \ with \ a, b \in \ \mathbb{R}\} & \mathcal{C}_{5} = \{[a, b]: \ a \le b \ with \ a, b \in \ \mathbb{R}\} \\ \mathcal{C}_{6} = \{] - \infty, b]: \ b \in \ \mathbb{R}\} & \mathcal{C}_{7} = \{] - \infty, b[: \ b \in \ \mathbb{R}\} \\ \mathcal{C}_{8} = \{[a, \infty[: \ a \in \ \mathbb{R}\}\} & \mathcal{C}_{9} = \{]a, \infty[: \ a \in \ \mathbb{R}\} \\ \mathcal{C}_{10} = \{]a, b]: \ a \le b \ with \ a, b \in \ \mathbb{Q}\} & \mathcal{C}_{11} = \{[a, b]: \ a \le b \ with \ a, b \in \ \mathbb{Q}\} \\ \mathcal{C}_{12} = \{]a, b]: \ a \le b \ with \ a, b \in \ \mathbb{Q}\} & \mathcal{C}_{15} = \{] - \infty, b[: \ b \in \ \mathbb{Q}\} \\ \mathcal{C}_{16} = \{[a, \infty[: \ a \in \ \mathbb{Q}\}\} & \mathcal{C}_{17} = \{]a, \infty[: \ a \in \ \mathbb{Q}\} \\ \end{array}$

By definition $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C}_0)$. Show the assertion for the cases i = 1, 9 and 12.

Exercise 1.2. (12 Points)

(a) Let (Ω, \mathcal{F}) and (S, \mathcal{S}) be two measurable spaces. Given a function $X : \Omega \to S$, show that the collection of sets

$$\sigma(X) := \left\{ X^{-1}(B) = \left\{ \omega \in \Omega \colon X(\omega) \in B \right\} \colon B \in \mathcal{S} \right\},\$$

is a σ -algebra on Ω .

Give a simple example where

 $\{X(A) = \{X(\omega) \colon \omega \in A\} \colon A \in \mathcal{F}\}$

is not a σ -algebra on S.

(b) Let (Ω, \mathcal{F}) , (S, \mathcal{S}) and (T, \mathcal{T}) be three measurable spaces. Given a \mathcal{F} - \mathcal{S} -measurable function $X : \Omega \to S$ and a \mathcal{S} - \mathcal{T} -measurable function $Y : S \to T$, show that $Z = Y \circ X : \Omega \to T$ is a \mathcal{S} - \mathcal{T} -measurable function.

(c) Let (Ω, \mathcal{F}) be a measurable space, and X, Y be random variables as well as (X_n) be a sequence of random variables. Show that

- aX + bY is a random variable for every $a, b \in \mathbb{R}$;
- *XY* is a random variable;
- $\max(X, Y)$ and $\min(X, Y)$ are random variables;
- sup X_n and inf X_n are extended real valued random variables;¹
- $\liminf X_n := \inf_n \sup_{k \ge n} X_k$ and $\limsup_{k \ge n} X_n := \inf_n \sup_{k \ge n} X_k$ are extended real valued random variables;
- $A := \{\lim X_n \text{ exists}\} := \{\omega \colon \lim X_n(\omega) \text{ exists}\} = \{\lim \inf X_n = \limsup X_n\} \text{ is measurable.}$

Exercise 1.3. (12 Points)

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Define

$$F(t) := P[X \le t], \quad t \in \mathbb{R}.$$

which is called the cumulative distribution function of X. Show that

- 1) $F : \mathbb{R} \to \mathbb{R}$ is increasing, $\lim_{t\to\infty} F(t) = 0$, $\lim_{t\to\infty} F(t) = 1$ and F is right-continuous.²
- 2) *F* is measurable for the Borel σ -algebra;
- 3) F has at most countably many discontinuous points.

Exercise 1.4. (Bonus 12 Points)

Let (Ω, \mathcal{F}, P) be a probability space and let $(A_i)_{i \in I}$ be an arbitrary family – not necessarily countable – of measurable sets. Suppose that $P[A_i \cap A_j] = 0$ for every $i, j \in I$ with $i \neq j$ and $P[A_i] > 0$ for every $i \in I$. Show that the family $(A_i)_{i \in I}$ is at most countable.

Due date: Upload before Monday 2015.09.28 14:00.

¹With respect to the Borel σ -algebra on $[-\infty,\infty]$ generated by the metric $d(x,y) = |\arctan(x) - \arctan(y)|$ that coincide with the euclidean topology on \mathbb{R} . An extended random variable $X : \Omega \to [-\infty,\infty]$ is measurable if and only if $\{X \le t\} \in \mathcal{F}$ for every $t \in \mathbb{R}$.

²That is $\lim_{s \nearrow t} F(s) = F(t)$.