"Stochastic Processes" - Homework Sheet 2

Throughout, (Ω, \mathcal{F}, P) be a probability space.
Exercise 2.1. (10 Points) Given a sequence $\left(A_{n}\right)$ of events, we define

$$
\liminf A_{n}=\cup_{n} \cap_{k \geq n} A_{k} \quad \text { and } \quad \limsup A_{n}=\cap_{n} \cup_{n \geq k} A_{k}
$$

In other terms

$$
\begin{aligned}
\limsup A_{n} & =\left\{\omega: \omega \in A_{n} \text { for infinitely many } n\right\} \\
\lim \inf A_{n} & =\left\{\omega: \omega \in A_{n} \text { for all } n \geq n_{0} \text { for } n_{0} \text { large enough }\right\}
\end{aligned}
$$

Show that
(a) $P\left[\liminf A_{n}\right] \leq \liminf P\left[A_{n}\right] \leq \limsup P\left[A_{n}\right] \leq P\left[\limsup A_{n}\right]$ and give an example for which all inequalities are strict. ${ }^{1}$
(b) if $\sum P\left[A_{n}\right]<\infty$, then $P\left[\limsup A_{n}\right]=0 .{ }^{2}$

Exercise 2.2. (20 Points +4 Bonus point question (f)) Recall that a sequence (X_{n}) of random variables converges to X in probability if $P\left[\left|X_{n}-X\right| \geq \varepsilon\right] \rightarrow 0$ for every $\varepsilon>0$. Throughout the exercise $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ denote sequences of random variables and X, Y two random variables.
(a) Show that

$$
d(X, Y)=E\left[\frac{|X-Y|}{1+|X-Y|}\right]
$$

defines a metric on L^{0} and that convergence in this metric is equivalent to convergence in probability. ${ }^{3}$
(b) Show that $X_{n} \rightarrow X P$-almost surely implies that $X_{n} \rightarrow X$ in probability. Give and example that the reciprocal is not true.
(c) Suppose that $\sum P\left[\left|X_{n}-X\right| \geq \varepsilon\right]<\infty$ for every $\varepsilon>0$. Show that $X_{n} \rightarrow X P$-almost surely.
(d) Show that each converging sequence of random variables that converges in probability has a subsequence that converges P-almost surely.
(e) Suppose that any subsequence of $\left(X_{n}\right)$ admits itself another subsequence that converges to $X P$ almost surely. Show that $X_{n} \rightarrow X$ in probability.
(f) (this one is Bonus) Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. ${ }^{4}$ Show that if $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ both in probability, then it holds $f\left(X_{n}, Y_{n}\right) \rightarrow f(X, Y)$ in probability.

Exercise 2.3. (20 Points)

[^0](a) Find a sequence of positive random variables $\left(X_{n}\right)$ such that $E\left[X_{n}\right] \rightarrow 0$ but $P\left[\limsup X_{n}>\right.$ $\left.\lim \inf X_{n}\right]=1$, that is X_{n} converges P-almost nowhere.
(b) Find a sequence of positive random variables $\left(X_{n}\right)$ such that $X_{n} \rightarrow X P$-almost surely and in L^{1}, but $\sup _{n} X_{n}$ is not integrable.
(c) Show that if $X_{n} \rightarrow X$ in L^{1}, then $X_{n} \rightarrow X$ in probability. Find an example such that the reciprocal is not true.
(d) Show that the dominated convergence theorem holds when instead of requiring $X_{n} \rightarrow X P$-almost surely, on suppose that $X_{n} \rightarrow X$ in probability.
(e) Let $\alpha \geq 1$ and X be an integrable positive random variable. Show that $\lim E\left[n \ln \left(1+(X / n)^{\alpha}\right)\right]$ exists and compute its value. ${ }^{5}$

Exercise 2.4. (Bonus, 10 Points) Recall that the $\|\cdot\|_{\infty}$ operator is defined as ${ }^{6}$

$$
\|X\|_{\infty}=\inf \left\{m \in \mathbb{R}_{+}: P[|X| \geq m]=0\right\}
$$

for a random variable X.
Let now $\left(X_{n}\right)$ be a sequence of random variables which converges P-almost surely to a random variable X. Show that for every $\varepsilon>0$, there exists a measurable set A with $P\left[A^{c}\right]<\varepsilon$ such that

$$
\lim \left\|\left(X_{n}-X\right) 1_{A}\right\|_{\infty}=0
$$

Hint: Define $A_{n, k}=\cup_{m \geq n}\left\{\left|X_{m}-X\right| \geq 1 / k\right\}$ and show that its probability can be made arbitrarily small.

Due date: Upload before Monday 2015/10/12 14:00.

[^1]
[^0]: ${ }^{1}$ To this end, show that $\liminf 1_{A_{n}}=1_{\lim \inf A_{n}}$ and $\limsup 1_{A_{n}}=1_{\lim \sup A_{n}}$.
 ${ }^{2}$ Recall that if $\sum a_{n}<\infty$ for $a_{n}>0$, then it holds $\sum_{k \geq n} a_{k} \rightarrow 0$ as $n \rightarrow \infty$.
 ${ }^{3}$ That is $X_{n} \rightarrow X$ in probability is equivalent to $d\left(X_{n}, X\right) \rightarrow 0$. Make use of Markov's inequality, and the fact that $f(x)=$ $x /(1+x)$ on \mathbb{R}_{+}is bounded by 1 , and strictly increasing.
 ${ }^{4}$ Use the fact that f is uniformly continuous on compact

[^1]: ${ }^{5}$ Hint, show that $\ln \left(1+x^{\alpha}\right) \leq \alpha x$ for $\alpha \geq 1$ and $x \geq 0$. Then use some Taylor expansion.
 ${ }^{6}$ With the convention that $\inf \emptyset=\infty$.

