"Stochastic Processes" - Homework Sheet 3

Exercise 3.1. (10 points)

Let (Ω, \mathcal{F}, P) be a probability space. Given two random variables X and Y in L^{2}, the covariance of X and Y is given as

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

and the variance of X as

$$
\operatorname{Var}(X)=\operatorname{Cov}(X, X)=E\left[(X-E[X])^{2}\right]
$$

Let $\left(X_{n}\right)$ be a sequence of pairwise uncorrelated random variables in L^{2} such that $\sup \operatorname{Var}\left(X_{n}\right)<\infty$. Defining

$$
S_{n}=\frac{1}{n} \sum_{k \leq n}\left(X_{k}-E\left[X_{k}\right]\right)
$$

show that $S_{n} \rightarrow 0$ in probability. ${ }^{1}$

Exercise 3.2. (10 Points)

We consider a very simple financial market with two stocks S^{1} and S^{2} which values tomorrow depends on three states, that is $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$. The values are given as follows

$$
S^{1}(\omega):=\left\{\begin{array}{ll}
90 & \text { if } \omega=\omega_{1} \text { or } \omega=\omega_{2} \\
110 & \text { if } \omega=\omega_{3}
\end{array} \quad \text { and } \quad S^{2}(\omega):= \begin{cases}90 & \text { if } \omega=\omega_{1} \\
100 & \text { if } \omega=\omega_{2} \\
110 & \text { if } \omega=\omega_{3}\end{cases}\right.
$$

We set $\mathcal{F}=2^{\Omega}$ and consider that each state comes with the same probability, that is, we consider the uniform probability measure P on \mathcal{F} given by $P\left[\left\{\omega_{1}\right\}\right]=P\left[\left\{\omega_{2}\right\}\right]=P\left[\left\{\omega_{3}\right\}\right]=1 / 3$.

Suppose that you are an insider that have the knowledge about the outcome of S^{1} tomorrow. Compute the conditional expected value of S^{2} with respect to this information, that is $E\left[S^{2} \mid S^{1}\right] .{ }^{2}$

Exercise 3.3. (18 points)
Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ-algebra. Show that
(i) $E[|E[X \mid \mathcal{G}]|] \leq E[|X|]$ for every $X \in L^{1}(\mathcal{F})$.
(ii) the mapping $X \mapsto E[X \mid \mathcal{G}]$ from $L^{1}(\mathcal{F})$ to $L^{1}(\mathcal{G})$ is linear and Lipschitz continuous;
(iii) $E[X \mid \mathcal{G}] \geq 0$-almost surely whenever $0 \leq X P$-almost surely and $X \in L^{1}(\mathcal{F})$;
(iv) $E\left[X_{n} \mid \mathcal{G}\right] \nearrow E[X \mid \mathcal{G}] P$-almost surely for every sequence $\left(X_{n}\right)$ of elements in $L^{1}(\mathcal{F})$ such that $0 \leq X_{n} \nearrow X \in L^{1}(\mathcal{F}) ;$
(v) $E\left[\lim \inf X_{n} \mid \mathcal{G}\right] \leq \liminf E\left[X_{n} \mid \mathcal{G}\right]$ for every sequence $\left(X_{n}\right)$ of elements in $L^{1}(\mathcal{F})$ such that $X_{n} \geq Y \in L^{1}(\mathcal{F}) ;$

[^0](vi) $E\left[X_{n} \mid \mathcal{G}\right] \rightarrow E[X \mid \mathcal{G}] P$-almost surely and in $L^{1}(\mathcal{F})$ for every sequence $\left(X_{n}\right)$ of elements in $L^{1}(\mathcal{F})$ such that $\left|X_{n}\right| \leq Y \in L^{1}(\mathcal{F})$ for every n;
(vii) $E[Y X \mid \mathcal{G}]=Y E[X \mid \mathcal{G}]$ whenever Y is \mathcal{G}-measurable and $X Y$ is integrable;
(viii) $E[X E[Y \mid \mathcal{G}]]=E[E[X \mid \mathcal{G}] Y]=E[E[X \mid \mathcal{G}] E[Y \mid \mathcal{G}]]$ whenever X and Y are in L^{2};
(ix) $E\left[E\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]=E\left[X \mid \mathcal{G}_{1}\right]$ whenever the σ-algebras are such that $\mathcal{G}_{1} \subseteq \mathcal{G}_{2} \subseteq \mathcal{F}$.

Exercise 3.4. (Bonus 10 points)

Let (Ω, \mathcal{F}, P) be a probability space where $\Omega=[0,1], \mathcal{F}$ is the Borel- σ-algebra of $[0,1]$ and P is the Lebesgue measure on $[0,1]$. On the vector space L^{0}, we consider the topology generated by the distance ${ }^{3}$

$$
d(X, Y)=E\left[\frac{|X-Y|}{1+|X-Y|}\right]
$$

Let $C \subseteq L^{0}$ be a convex set with non empty interior ${ }^{4}$. Show that $C=L^{0} .{ }^{5}$ Deduce that the only continuous linear function $I: L^{0} \rightarrow \mathbb{R}$ with this topology is the constant 0 , that is, $I(X)=0$ for every $X \in L^{0} .{ }^{6}$

Due date: Upload before Monday 2015.10.19 14:00.

[^1]
[^0]: ${ }^{1}$ What about Markov inequality?...
 ${ }^{2}$ Under this terminology, we understand conditional expectation of S^{2} with respect to the σ-algebra generated by S^{1}, that is $\sigma\left(S^{1}\right)$.

[^1]: ${ }^{3}$ Which according to the last homework sheet corresponds to the topology of convergence in probability.
 ${ }^{4}$ That is, there exists a open ball $B_{\varepsilon}(Y)=\{X: d(X, Y)<\varepsilon\}$ with $Y \in C$ and $\varepsilon>0$ such that $B_{\varepsilon}(Y) \subseteq C$.
 ${ }^{5}$ Show that without loss of generality you can assume that $B_{\varepsilon}(0) \subseteq C$ for some $\varepsilon>0$ and approximate any $X \in L^{0}$ by smart convex combinations - with more than two elements - of elements in $B_{\varepsilon}(0)$.
 ${ }^{6}$ If I is linear and continuous, it follows that $I^{-1}(]-\varepsilon, \varepsilon[)$ is convex and open.

