"STOCHASTIC PROCESSES" – HOMEWORK SHEET 5

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ a filtrated probability space with $\mathbb{F} = (\mathcal{F}_t)_{t=0,1,\dots}$.

Exercise 5.1. (10 points)

Provide an example of a martingale $X = (X_t)$ such that $\sup_t E[|X_t|] < \infty$ and $X_t \to X_\infty$ *P*-almost surely for some X_∞ but for which however it does not hold $E[|X_t - X_\infty|] \to 0$.

Exercise 5.2. (10 points)

Let X be an adapted and integrable stochastic process. Show that if $E[X_{\tau}] = E[X_0]$ for every finite stopping time¹ τ then X is a martingale.

Exercise 5.3. (20 points)

Under the same assumptions as Exercise 4.3 of the Homework sheet 4, that is, let X be an adapted process such that $E[\sup_t |X_t|] < \infty$. For the questions a) to d), we assume that $\mathbf{T} = \{0, \ldots, T\}$ for a given time horizon $T \in \mathbb{N}$. Denote by \mathcal{T} the set of all stopping times with values in \mathbf{T} . We define recursively

$$S_T = X_T$$
 and $S_t = \max\{E[S_{t+1}|\mathcal{F}_t]; X_t\}, t \le T - 1.$

and denote by S = M - A the Doob decomposition of S where M is a martingale and A is a predictable and integrable process with $A_0 = 0$. We define

$$\tau_0 = \inf \{t \colon X_t = S_t\}$$
 and $\tau_1 = \inf \{t \colon A_{t+1} > 0\} \land T$

- *a)* Show that τ_1 is a stopping time such that $\tau_0 \leq \tau_1$;
- b) Show that for every $\sigma \in \mathcal{T}$ the following assertions are equivalent:
- (i) $E[X_{\sigma}] = \sup_{\tau \in \mathcal{T}} E[X_{\tau}];$
- (ii) $X_{\sigma} = S_{\sigma}$ and S^{σ} is a martingale;
- (iii) $\tau_0 \leq \sigma \leq \tau_1$ and $E[X_{\sigma}] = E[S_{\sigma}]$.

c) Let \mathcal{M}_0 be the set of all martingale $Y = (Y_t)$ such that $Y_0 = 0$. Show that

$$\max_{\tau \in \mathcal{T}} E\left[X_{\tau}\right] = \min_{Y \in \mathcal{M}_0} E\left[\max_{0 \le t \le T} \left(X_t - Y_t\right)\right]$$

d) Suppose that T = 2, $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = \{\emptyset, \Omega, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}\}$ and $\mathcal{F}_2 = 2^{\Omega}$. The process X is given by

$$X_0 \equiv 10, \quad X_1(\omega) = \begin{cases} 5 & \text{if } \omega \in \{\omega_1, \omega_2\}\\ 30 & \text{otherwise} \end{cases}, \quad X_3(\omega) = \begin{cases} 5 & \text{if } \omega = \omega_1\\ 15 & \text{if } \omega = \omega_2\\ 10 & \text{if } \omega = \omega_3\\ 30 & \text{if } \omega = \omega_4 \end{cases}$$

compute τ_0 *and* τ_1 *.*

¹That is $P[\tau \leq T] = 1$ for some $T \in \mathbb{N}$

e) From now on, we consider that $\mathbf{T} = \mathbb{N}_0$, $T = \infty$ and consider the process S defined in homework sheet 4.3 d). For $n \in \mathbb{N}$ we define $\mathcal{T}^n = \{\tau \in \mathcal{T} : n \leq \tau < \infty\}$ and $\tau_n = \inf\{t : n \leq t \text{ and } S_t = X_t\}$. Show that if $\tau_n < \infty$, then

$$E[X_{\tau_n}] = E[S_n] = \max_{\tau \in \mathcal{T}^n} E[X_{\tau}]$$

Due date: Upload before Monday 2015.11.02 14:00.