"Stochastic Processes" - Homework Sheet 5

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ a filtrated probability space with $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0,1, \ldots}$.

Exercise 5.1. (10 points)

Provide an example of a martingale $X=\left(X_{t}\right)$ such that $\sup _{t} E\left[\left|X_{t}\right|\right]<\infty$ and $X_{t} \rightarrow X_{\infty} P$-almost surely for some X_{∞} but for which however it does not hold $E\left[\left|X_{t}-X_{\infty}\right|\right] \rightarrow 0$.

Exercise 5.2. (10 points)

Let X be an adapted and integrable stochastic process. Show that if $E\left[X_{\tau}\right]=E\left[X_{0}\right]$ for every finite stopping time ${ }^{l} \tau$ then X is a martingale.

Exercise 5.3. (20 points)

Under the same assumptions as Exercise 4.3 of the Homework sheet 4, that is, let X be an adapted process such that $E\left[\sup _{t}\left|X_{t}\right|\right]<\infty$. For the questions a) to d), we assume that $\mathbf{T}=\{0, \ldots, T\}$ for a given time horizon $T \in \mathbb{N}$. Denote by \mathcal{T} the set of all stopping times with values in \mathbf{T}. We define recursively

$$
S_{T}=X_{T} \quad \text { and } \quad S_{t}=\max \left\{E\left[S_{t+1} \mid \mathcal{F}_{t}\right] ; X_{t}\right\}, \quad t \leq T-1
$$

and denote by $S=M-A$ the Doob decomposition of S where M is a martingale and A is a predictable and integrable process with $A_{0}=0$. We define

$$
\tau_{0}=\inf \left\{t: X_{t}=S_{t}\right\} \quad \text { and } \quad \tau_{1}=\inf \left\{t: A_{t+1}>0\right\} \wedge T
$$

a) Show that τ_{1} is a stopping time such that $\tau_{0} \leq \tau_{1}$;
b) Show that for every $\sigma \in \mathcal{T}$ the following assertions are equivalent:
(i) $E\left[X_{\sigma}\right]=\sup _{\tau \in \mathcal{T}} E\left[X_{\tau}\right]$;
(ii) $X_{\sigma}=S_{\sigma}$ and S^{σ} is a martingale;
(iii) $\tau_{0} \leq \sigma \leq \tau_{1}$ and $E\left[X_{\sigma}\right]=E\left[S_{\sigma}\right]$.
c) Let \mathcal{M}_{0} be the set of all martingale $Y=\left(Y_{t}\right)$ such that $Y_{0}=0$. Show that

$$
\max _{\tau \in \mathcal{T}} E\left[X_{\tau}\right]=\min _{Y \in \mathcal{M}_{0}} E\left[\max _{0 \leq t \leq T}\left(X_{t}-Y_{t}\right)\right]
$$

d) Suppose that $T=2, \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}, \mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{1}=\left\{\emptyset, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}$ and $\mathcal{F}_{2}=2^{\Omega}$. The process X is given by

$$
X_{0} \equiv 10, \quad X_{1}(\omega)=\left\{\begin{array}{ll}
5 & \text { if } \omega \in\left\{\omega_{1}, \omega_{2}\right\} \\
30 & \text { otherwise }
\end{array}, \quad X_{3}(\omega)= \begin{cases}5 & \text { if } \omega=\omega_{1} \\
15 & \text { if } \omega=\omega_{2} \\
10 & \text { if } \omega=\omega_{3} \\
30 & \text { if } \omega=\omega_{4}\end{cases}\right.
$$

compute τ_{0} and τ_{1}.

[^0]e) From now on, we consider that $\mathbf{T}=\mathbb{N}_{0}, T=\infty$ and consider the process S defined in homework sheet $4.3 d$). For $n \in \mathbb{N}$ we define $\mathcal{T}^{n}=\{\tau \in \mathcal{T}: n \leq \tau<\infty\}$ and $\tau_{n}=\inf \left\{t: n \leq t\right.$ and $\left.S_{t}=X_{t}\right\}$. Show that if $\tau_{n}<\infty$, then
$$
E\left[X_{\tau_{n}}\right]=E\left[S_{n}\right]=\max _{\tau \in \mathcal{T}^{n}} E\left[X_{\tau}\right]
$$

Due date: Upload before Monday 2015.11.02 14:00.

[^0]: ${ }^{1}$ That is $P[\tau \leq T]=1$ for some $T \in \mathbb{N}$

