"Stochastic Processes" - Homework Sheet 6

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ a filtrated probability space with $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0,1, \ldots}$.
Exercise 5.1. (10 points) Let X be a sub-martingale. Let σ and τ be two stopping times, such that $\sigma \leq \tau \leq T$ for an integer T. We set

$$
\tau_{0}=0
$$

and recursively

$$
\begin{aligned}
\tau_{1}(\omega) & =\inf \left\{t: \sigma(\omega) \leq t \leq \tau(\omega), t \geq \tau_{0}(\omega), X_{t}(\omega)<x\right\} \\
\tau_{2}(\omega) & =\inf \left\{t: \sigma(\omega) \leq t \leq \tau(\omega), t \geq \tau_{1}(\omega), X_{t}(\omega)>y\right\} \\
& \vdots \\
\tau_{2 k-1}(\omega) & =\inf \left\{t: \sigma(\omega) \leq t \leq \tau(\omega), t \geq \tau_{2 k-2}(\omega), X_{t}(\omega)<x\right\} \\
\tau_{2 k}(\omega) & =\inf \left\{t: \sigma(\omega) \leq t \leq \tau(\omega), t \geq \tau_{2 k-1}(\omega), X_{t}(\omega)>y\right\}
\end{aligned}
$$

with the convention that the infimum over the empty set is infinite. Define

$$
U_{\llbracket \sigma(\omega), \tau(\omega) \rrbracket}(x, y, X(\omega))=\sup \left\{k: \tau_{2 k}(\omega)<\infty\right\}
$$

where $\llbracket \sigma(\omega), \tau(\omega) \rrbracket=\{t \in \mathbb{N}: \sigma(\omega) \leq t \leq \tau(\omega)\}$.
(i) Show that

$$
(y-x) E\left[U_{\llbracket \sigma, \tau \rrbracket}(x, y, X) \mid \mathcal{F}_{\sigma}\right] \leq E\left[\left(X_{\tau}-x\right)^{+} \mid \mathcal{F}_{\sigma}\right]-E\left[\left(X_{\sigma}-x\right)^{+} \mid \mathcal{F}_{\sigma}\right]
$$

(ii) Show that

$$
P\left[\sup _{t} X_{t} \geq \lambda\right] \leq \frac{1}{\lambda} \sup _{t} E\left[X_{t}^{+}\right]
$$

Exercise 5.2. (20 points)
We consider the following random walk starting at 0

$$
S_{0}=0 \quad \text { and } \quad S_{t}=\sum_{s=1}^{t} X_{s}, \quad t \geq 1
$$

where

$$
X_{t}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega_{t}=1, \\
-1 & \text { if } \omega_{t}=-1 .
\end{array} \quad t \geq 1 \text { and } \omega=\left(\omega_{t}\right)_{t \in \mathbb{N}} \in \Omega=\{-1,1\}^{\mathbb{N}}\right.
$$

As for the filtration we take

$$
\mathcal{F}_{0}=\{\emptyset, \Omega\} \quad \text { and } \quad \mathcal{F}_{t}=\sigma\left(X_{s}: 1 \leq s \leq t\right), \quad t \geq 1
$$

On $\mathcal{F}=\otimes_{t \in \mathbb{N}}\{\emptyset,\{-1\},\{1\},\{-1,1\}\}$ and the unique probability on \mathcal{F} which on the finite cylinder is given by

$$
P[A]=p^{l} q^{t-l}
$$

where $p \in[0,1], q=1-p$ and

$$
A=\left\{\omega \in \Omega: \omega_{t_{k}}=e_{k}, k=1, \ldots n\right\}
$$

for the finite number of times t_{1}, \ldots, t_{n}, numbers $e_{k} \in\{-1,1\}$ and l is equal to the numbers of those $e_{k}=1$. In other words, this is the probability that we have head at time t_{k} when $e_{k}=1$ and tail when $e_{k}=-1$ for the finite numbers of time t_{1}, \ldots, t_{n} but with a biased coin which provides a probability p of having head and $q=1-p$ of having tail.
(i) Show that S is a martingale if and only if $p=1 / 2$. Show in that case that

$$
P\left[\liminf X_{t}=-\infty \text { and } \limsup X_{t}=\infty\right]=1
$$

(ii) Show in the general case

$$
P\left[\lim X_{t}=\infty\right]=1, \quad \text { if } p>1 / 2
$$

and

$$
P\left[\lim X_{t}=-\infty\right]=1, \quad \text { if } p<1 / 2
$$

To do so, show first that $E\left[X_{t} \mid \mathcal{F}_{t-1}\right]=E\left[X_{t}\right]$ for every $t \geq 1$. Then, that the Doob-Meyer decomposition

$$
S=M-A,
$$

is such that $A_{t}=-t(2 p-1)$ and M satisfies

$$
P\left[\liminf M_{t}=-\infty \text { and } \lim \sup M_{t}=\infty\right]=1
$$

and use exercise 3.1.
(iii) Suppose that $p=1 / 2$. Define $\tau=\inf \left\{t: S_{t}=a\right.$ or $\left.S_{t}=-b\right\}$ for two integers a, b.

- Show that $P[\tau<\infty]=1$.
- Show that

$$
P\left[S_{\tau}=a\right]=\frac{b}{a+b}
$$

This is the probability that S reach the value a before hitting $-b$.

- Show that $M=S_{t}^{2}-t$ is a martingale. Deduce that

$$
E[\tau]=a b
$$

(iv) Suppose that $p \neq 1 / 2$, in the general case, show that $M_{t}:=(q / p)^{S_{t}}$ is a martingale. Define $\tau=\inf \left\{t: S_{t}=a\right.$ or $\left.S_{t}=-b\right\}$ for two integers a, b. Show that

$$
P\left[S_{\tau}=a\right]=\frac{(q / p)^{b}-1}{(q / p)^{a+b}-1}
$$

Due date: Upload before Monday 2015.11.02 14:00.

