"Stochastic Processes" - Homework Sheet 7

Exercise 7.1. (5 points)

Let (Ω, \mathcal{F}, P) be a probability space. Let $X=\left(X_{t}\right)_{t \in \mathbb{N}}$ be a process of integrable independent random variables, that is

$$
P\left[X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right]=\prod_{k=1}^{n} P\left[X_{t_{k}} \in A_{k}\right]
$$

for every finite subset of times $t_{1}, \ldots t_{n}$ and Borel sets $A_{1}, \ldots A_{n}$. Suppose that $E\left[X_{t}\right]=1$ for every t.
For the filtration

$$
\mathcal{F}_{t}=\sigma\left(X_{s}: s \leq t\right)
$$

Show that the process Y given by

$$
Y_{t}=\prod_{s=0}^{t} X_{s}, \quad s \geq 0
$$

is a martingale.

Exercise 7.2. (10 points)

In this exercise, we will consider a simple discrete price process model with finite horizon $T \in \mathbb{N}$.
We denote by $S=\left(S_{t}\right)_{0 \leq t \leq T}$ the evolution of a stock price for the times $t=0, \ldots, T$. Usually, stock prices are strictly positives and characterized by their returns

$$
R_{t}=\frac{S_{t}-S_{t-1}}{S_{t}}, \quad 1 \leq t \leq T
$$

which is the proportional gain/loss of the price evolution between $t-1$ and t. Or in other terms, if the returns $R=\left(R_{t}\right)_{1 \leq t \leq T}$ are given, the stock price is then

$$
S_{t}=S_{0} \prod_{s=1}^{t}\left(1+R_{s}\right), \quad 0 \leq t \leq T
$$

for a given start price $S_{0}>0$. To guarantee that the stock price remains strictly positive, we assume that $R_{t}>-1$ for every $t=1, \ldots T$.

Our simple model is as follows. Let

- $\Omega=\{-1,1\}^{T}=\left\{\omega=\left(\omega_{t}\right)_{1 \leq t \leq T}: \omega_{t} \in\{-1,1\}\right\}$;
- For $-1<d<u$, (where d stands for down and u for up) we define

$$
R_{t}(\omega):=\left\{\begin{array}{ll}
u & \text { if } \omega_{t}=1 \\
d & \text { if } \omega_{t}=-1
\end{array}, \quad 1 \leq t \leq T\right.
$$

- As for the filtration we take

$$
\mathcal{F}_{0}=\{\emptyset, \Omega\} \quad \text { and } \quad \mathcal{F}_{t}=\sigma\left(R_{s}: 1 \leq s \leq t\right), \quad 1 \leq t \leq T
$$

Show that if $-1<d<0<u$, then there exists a unique probability measure P on 2^{Ω} such that S is a martingale. Hereby, show that this probability measure is such that $P\left[\omega_{t}=1\right]=-d /(u-d)$. Show that under this measure, the random variables R_{1}, \ldots, R_{T} are independent.

Exercise 7.3. (Bonus 10 points) Find a probability space, (Ω, \mathcal{F}, P), a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}}$, a process X and a random variable X_{T} such that

- X is a martingale;
- $\sup _{t} E\left[\left|X_{t}\right|\right]<\infty$;
- $X_{t} \rightarrow X_{T}$ P-almost surely;
- but $E\left[\left|X_{t}-X\right|\right] \nrightarrow 0$.

Due date: Upload before Monday 2015.11.09 14:00.

