"STOCHASTIC PROCESSES" – HOMEWORK SHEET 8

Exercise 8.1. (8 points)

Recall from the lecture that a family (\mathcal{C}^i) of collections of elements in \mathcal{F} on some probability space (Ω, \mathcal{F}, P) is called independent if for every finite collection $(A_{i_k})_{k \leq n}$ with $A_{i_k} \in \mathcal{C}^{i_k}$ for every $k = 1, \ldots, n$, it holds

$$P[A_{i_1} \cap \dots \cap A_{i_n}] = \prod_{k \le n} P[A_{i_k}]$$

And random variables of a family (X^i) are independent if $(\sigma(X_i))$ is an independent family.

• Such a family (\mathcal{C}^i) is called pairwise independent if $P[A_{i_1} \cap A_{i_2}] = P[A_{i_1}]P[A_{i_2}]$ for every $A_{i_1} \in \mathcal{C}^{i_1}$, $A_{i_2} \in \mathcal{C}^{i_2}$ and every i_1, i_2 . Pairwise independence is therefore a weaker statement than independence. It is actually strictly weaker.

Find three events A, B and C in some probability space that are pairwise independent but not independent.

• Show that two random variables X, Y are independent, if and only it

$$P_{(X,Y)} = P_X \otimes P_Y$$

where

$$P_{(X,Y)}[A] := P[(X,Y) \in A], \quad P_X[A_1] := P[X \in A_1] \quad and \quad P_Y[A_2] := P[Y \in A_2]$$

for Borel sets $A_1, A_2 \in \mathcal{B}(\mathbb{R})$ and $A \in \mathcal{B}(\mathbb{R} \times \mathbb{R}) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

Exercise 8.2. (8 points)

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{G} be a σ -algebra such that $\mathcal{G} \subseteq \mathcal{F}$. Let further (A_n) be a sequence of pairwise disjoint elements of \mathcal{F} such that $P[A_n] > 0$ for every n. Define $\mathcal{G} = \sigma(A_n: n)$ the σ -algebra generated by the sequence (A_n) . Show that

(i) for every $B \in \mathcal{F}$ it holds

$$P[B|\mathcal{G}] := E[1_B|\mathcal{G}] = \sum P[B|A_n] 1_{A_n}$$

where $P[B|A_n] := P[B|\sigma(A_n)] = P[B \cap A_n]/P[A_n].$

(*ii*) for every $X \in L^1$, it holds

$$E[X|\mathcal{G}] = \sum \frac{E[1_{A_n}X]}{P[A_n]} \mathbf{1}_{A_n}$$

Exercise 8.3. (8 points)

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{G} be a σ -algebra such that $\mathcal{G} \subseteq \mathcal{F}$. Let also $X \in L^1$ be a random variable such that X > 0 almost surely and E[X] = 1.

(i) Show that $Q: \mathcal{F} \to [0,1]$, defined as $Q[A] = E[1_A X]$ defines a probability measure which is equivalent to P^1 and for which holds

$$E_Q[Y] = E[XY]$$

for every positive random variable Y,

(ii) Show that for every G-measurable positive random variable Y, it holds

$$E_Q[Y] = E[E[X|\mathcal{G}]Y]$$

(iii) Let \mathcal{H} be a σ -algebra such that $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ and Y be a \mathcal{G} -measurable positive random variable. Show that it holds

$$E_Q[Y|\mathcal{H}] = \frac{1}{E[X|\mathcal{H}]} E[XY|\mathcal{H}]$$

(iv) Let $\mathbb{F} = (\mathcal{F})_{0 \le t \le T}$ be a filtration where T is a finite integer. Define the process X by $X_t =$ $E[X|\mathcal{F}_t]$ for every $t = 1, \ldots, T$. Show that a process Y is a martingale with respect to the measure Q if and only if the process $XY = (X_tY_t)_{1 \le t \le T}$ is a martingale with respect to the measure P.

Exercise 8.4. (10 points)

Be careful, in this exercise, we make everything upside down.

- Let (Ω, \mathcal{F}, P) be a probability space and $(\mathcal{F}_t)_{0 \leq t}$ be a sequence of σ -algebras such that $\mathcal{F} \supseteq \mathcal{F}_0 \supseteq$ $\mathcal{F}_1 \supseteq \ldots \supseteq \mathcal{F}_t \supseteq \ldots$ Suppose that X is a backward-martingale, that is such that
 - X_t is \mathcal{F}_t -measurable for every t;
 - X_t is integrable for every t;

$$- E[X_t | \mathcal{F}_{t+1}] = X_{t+1}.$$

Inspired by Doob's upcrossing's inequality, show that $X_t \to X_T$ almost surely where $X_T \in L^1$.

• Let (X_t) be a sequence of independent, identically distributed and integrable random variable. Show using the previous point that $(\sum_{s \le t} X_s)/t$ converges almost surely.²

Suppose now that

Due date: Upload before Monday 2015.23.09 14:00.

¹That is Q[A] = 0 if and only if P[A] = 0. ²Hint: Show that $E[X_1 | \sigma(\sum_{s \le t} X_s, X_{t+1}, \ldots)] = \sum_{s \le t} X_s$.