"STOCHASTIC PROCESSES" – HOMEWORK SHEET 9

Exercise 9.1. (5 points) Let X and Y be two integrable random variables independent of each other and identically distributed. Show that

$$E[X|X+Y] = \frac{X+Y}{2}$$

Exercise 9.2. (Bonus 5 points) Let \mathcal{G}_1 and \mathcal{G}_2 be two σ -algebra independent of each other. Let X be an integrable random variable such that $\sigma(\sigma(X), \mathcal{G}_1)$ is independent of \mathcal{G}_2 . Show that

$$E[X|\sigma(\mathcal{G}_1, \mathcal{G}_2))] = E[X|\mathcal{G}_1]$$

Exercise 9.3. (5 points) Let X be a positive random variable. Show that

$$E[X] = \int_{0}^{\infty} P[X > x] dx$$

Exercise 9.4. (20 points)

Let X and Y be two random variable with a joint distribution $P_{(X,Y)}$ absolute continuous with respect to the Lebesgue measure on \mathbb{R}^2 . Show that

• show that $P_{(X,Y)}$ has a density, that it, there exists a measurable function $f_{(X,Y)} : \mathbb{R}^2 \to \mathbb{R}_+$, such that

$$E\left[g(X,Y)\right] = \int_{\mathbb{R}^2} g(x,y) f_{(X,Y)}(x,y) dx dy$$

for every positive measurable function $g: \mathbb{R}^2 \to [0, \infty]$.

- show that P_X as well as P_Y are also absolutely continuous with respect to Lebegue. Provide an expression for their density f_X and f_Y respectively.
- show that $P_{(X,Y)} = P_X \otimes K$ for some stochastic kernel

$$K(x,B) = \int_{B} f_{(Y|X)}(x,y)dy$$

where $f_{(Y|X)} : \mathbb{R}^2 \to \mathbb{R}$ is to be determined as a function of f_X , f_Y and $f_{(X,Y)}$.

• show that

$$E\left[g(X,Y)|X\right] = \int_{\mathbb{R}^2} f_{Y|X}(X,y)dy$$

for every positive measurable random variable $g: \mathbb{R}^2 \to \mathbb{R}$.

• Suppose that $f_{(X,Y)} = 21_{[0,1]}(x+y)1_{[0\infty[}(x)1_{[0,\infty[}(y))$. Compute $E[\exp(Y)|X]$ explicitly.

Exercise 9.5. (5 points) Let (X_n) be a sequence of independent random variables such that each X_n is $\mathcal{N}(\mu, \sigma)$ -distributed with $\mu \in \mathbb{R}$ and $\sigma > 0$, that is, they are all identically distributed with a probability density function with respect to Lebesgue given by

$$f_{X_n}(x) = f_{X_1}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We define the process M as

$$M_0 = 1$$
, and $M_t = \exp\left(\sum_{s=1}^t X_s - \frac{n\sigma^2}{2}\right)$

Show that M is a converging martingale and compute its limit.

Due date: Upload before Monday 2015.11.30 14:00.