"Stochastic Processes" - Homework Sheet 9

Exercise 9.1. (5 points) Let X and Y be two integrable random variables independent of each other and identically distributed. Show that

$$
E[X \mid X+Y]=\frac{X+Y}{2}
$$

Exercise 9.2. (Bonus 5 points) Let \mathcal{G}_{1} and \mathcal{G}_{2} be two σ-algebra independent of each other. Let X be an integrable random variable such that $\sigma\left(\sigma(X), \mathcal{G}_{1}\right)$ is independent of \mathcal{G}_{2}. Show that

$$
\left.E\left[X \mid \sigma\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)\right]=E\left[X \mid \mathcal{G}_{1}\right]
$$

Exercise 9.3. (5 points) Let X be a positive random variable. Show that

$$
E[X]=\int_{0}^{\infty} P[X>x] d x
$$

Exercise 9.4. (20 points)

Let X and Y be two random variable with a joint distribution $P_{(X, Y)}$ absolute continuous with respect to the Lebesgue measure on \mathbb{R}^{2}. Show that

- show that $P_{(X, Y)}$ has a density, that it, there exists a measurable function $f_{(X, Y)}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$, such that

$$
E[g(X, Y)]=\int_{\mathbb{R}^{2}} g(x, y) f_{(X, Y)}(x, y) d x d y
$$

for every positive measurable function $g: \mathbb{R}^{2} \rightarrow[0, \infty[$.

- show that P_{X} as well as P_{Y} are also absolutely continuous with respect to Lebegue. Provide an expression for their density f_{X} and f_{Y} respectively.
- show that $P_{(X, Y)}=P_{X} \otimes K$ for some stochastic kernel

$$
K(x, B)=\int_{B} f_{(Y \mid X)}(x, y) d y
$$

where $f_{(Y \mid X)}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is to be determined as a function of f_{X}, f_{Y} and $f_{(X, Y)}$.

- show that

$$
E[g(X, Y) \mid X]=\int_{\mathbb{R}^{2}} f_{Y \mid X}(X, y) d y
$$

for every positive measurable random variable $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

- Suppose that $f_{(X, Y)}=21_{[0,1]}(x+y) 1_{[0 \infty[}(x) 1_{[0, \infty[}(y)$. Compute $E[\exp (Y) \mid X]$ explicitly.

Exercise 9.5. (5 points) Let $\left(X_{n}\right)$ be a sequence of independent random variables such that each X_{n} is $\mathcal{N}(\mu, \sigma)$-distributed with $\mu \in \mathbb{R}$ and $\sigma>0$, that is, they are all identically distributed with a probability density function with respect to Lebesgue given by

$$
f_{X_{n}}(x)=f_{X_{1}}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

We define the process M as

$$
M_{0}=1, \quad \text { and } \quad M_{t}=\exp \left(\sum_{s=1}^{t} X_{s}-\frac{n \sigma^{2}}{2}\right)
$$

Show that M is a converging martingale and compute its limit.

Due date: Upload before Monday 2015.11.30 14:00.

