"STOCHASTIC PROCESSES" – HOMEWORK SHEET 10

Definition 10.1. Given a transition probability p on the countable state space S. A distribution π on S is called *stationary* if

- $\pi_x < \infty$ for every state x;
- $\pi_x = \sum_{y \in S} \pi_x p_{xy}$, for every state x.

If $\sum \pi_x = 1$, we say that π is a stationary probability distribution.

Exercise 10.2. (10 points)

• Let X be a time homogeneous Markov chain with start distribution μ and transition probability matrix p. Suppose that μ is a stationary probability distribution, shows that

$$P_{\mu}\left[X_t = x\right] = \mu_x$$

for every time t and state x.

• Let $(Y_n)_{n\geq 1}$ and X_0 be independent and identically distributed random variables on \mathbb{Z}^d . Defining the random walk

$$X_t = X_0 + \sum_{s \le t} Y_s$$

we saw in the lecture that it is a time homogeneous Markov chain. Show that $\pi_x = 1$ for every $x \in \mathbb{Z}^d$ is a stationary distribution.

Exercise 10.3. (10 points)

Let X be a time homogeneous Markov chain with values on the state space $S = \{x_0, x_1, \dots, x_6\}$ and with transition probability matrix

	[1/3]	0	0	1/3	1/3	0	0
	0	1/2	0	1/2	0	0	0
	0	0	1	0	0	0	0
P =	1/2	0	0	1/2	0	0	0
	1/2	0	0	1/2	0	0	0
	0	0	0	0	0	1	0
	0	$egin{array}{c} 0 \\ 1/2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1/3 \end{array}$	1/3	0	1/3	0	0

- As in the lecture, provide a graph that shows how the process evolves between the seven states.
- Give the recurrent and transient states.

Exercise 10.4. (10 points)

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a probability space and X be an adapted process with value in (S, \mathcal{S}) whereby S is countable and $\mathcal{S} = 2^S$. Let further

$$\mathcal{G}_t = \sigma(X_s \colon s \ge t)$$

the backward filtration generated by X. Show that the following three assertions are equivalent

- X is a Markov-Chain¹
- For all t and bounded \mathcal{G}_t -measurable random variable Y holds

$$E\left[Y|\mathcal{F}_t\right] = E\left[Y|X_t\right]$$

• For all $t, B \in \mathcal{F}_t$ and $C \in \mathcal{G}_t$ it holds

$$P[B \cap C|X_t] = P[B|X_t] P[C|X_t]$$

Exercise 10.5. (Bonus 10 points)

Let $S := \{1, 2, 3, 4\}$ and consider a time homogeneous Markov Chain X on the canonical space with transition probability matrix

$$p = \begin{pmatrix} 1 & 0 & 0 & 0\\ 1/2 & 0 & 1/2 & 0\\ 0 & 1/2 & 0 & 1/2\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

a) As in the lecture, provide a graph that shows how the process evolves between the four states. Hereby, you can visualize which sequences are possible or not.

b) Compute the probability $P_x[X_t = 4, \text{ for some time } t]$ where x is a state. That is the probability that X reaches at some moment the state 4 starting from x.

c) Let $\tau_{1,4} = \inf\{t: X_t = 1 \text{ or } X_t = 4\}$ be the first "visiting" time of the Markov Chain of the states 1 or 4. Compute

 $E_{P_x}[\tau_{1,4}]$

for every state x.

d) Compute the stationary distribution of this Markov Chain – inspire yourself from Exercise 10.2.

Due date: Upload before Monday 2015.12.07 14:00.

¹Not necessarily time-homogeneous.