## "Stochastic Processes" - Homework Sheet 10

Definition 10.1. Given a transition probability $p$ on the countable state space $S$. A distribution $\pi$ on $S$ is called stationary if

- $\pi_{x}<\infty$ for every state $x$;
- $\pi_{x}=\sum_{y \in S} \pi_{x} p_{x y}$, for every state $x$.

If $\sum \pi_{x}=1$, we say that $\pi$ is a stationary probability distribution.
Exercise 10.2. (10 points)

- Let $X$ be a time homogeneous Markov chain with start distribution $\mu$ and transition probability matrix p. Suppose that $\mu$ is a stationary probability distribution, shows that

$$
P_{\mu}\left[X_{t}=x\right]=\mu_{x}
$$

for every time $t$ and state $x$.

- Let $\left(Y_{n}\right)_{n \geq 1}$ and $X_{0}$ be independent and identically distributed random variables on $\mathbb{Z}^{d}$. Defining the random walk

$$
X_{t}=X_{0}+\sum_{s \leq t} Y_{s}
$$

we saw in the lecture that it is a time homogeneous Markov chain. Show that $\pi_{x}=1$ for every $x \in \mathbb{Z}^{d}$ is a stationary distribution.

Exercise 10.3. (10 points)
Let $X$ be a time homogeneous Markov chain with values on the state space $S=\left\{x_{0}, x_{1}, \ldots, x_{6}\right\}$ and with transition probability matrix

$$
P=\left[\begin{array}{ccccccc}
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 / 3 & 1 / 3 & 0 & 1 / 3 & 0 & 0
\end{array}\right] .
$$

- As in the lecture, provide a graph that shows how the process evolves between the seven states.
- Give the recurrent and transient states.

Exercise 10.4. (10 points)
Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a probability space and $X$ be an adapted process with value in $(S, \mathcal{S})$ whereby $S$ is countable and $\mathcal{S}=2^{S}$. Let further

$$
\mathcal{G}_{t}=\sigma\left(X_{s}: s \geq t\right)
$$

the backward filtration generated by $X$. Show that the following three assertions are equivalent

- $X$ is a Markov-Chain ${ }^{1}$
- For all $t$ and bounded $\mathcal{G}_{t}$-measurable random variable $Y$ holds

$$
E\left[Y \mid \mathcal{F}_{t}\right]=E\left[Y \mid X_{t}\right] .
$$

- For all $t, B \in \mathcal{F}_{t}$ and $C \in \mathcal{G}_{t}$ it holds

$$
P\left[B \cap C \mid X_{t}\right]=P\left[B \mid X_{t}\right] P\left[C \mid X_{t}\right]
$$

Exercise 10.5. (Bonus 10 points)
Let $S:=\{1,2,3,4\}$ and consider a time homogeneous Markov Chain $X$ on the canonical space with transition probability matrix

$$
p=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

a) As in the lecture, provide a graph that shows how the process evolves between the four states. Hereby, you can visualize which sequences are possible or not.
b) Compute the probability $P_{x}\left[X_{t}=4\right.$, for some time $\left.t\right]$ where $x$ is a state. That is the probability that $X$ reaches at some moment the state 4 starting from $x$.
c) Let $\tau_{1,4}=\inf \left\{t: X_{t}=1\right.$ or $\left.X_{t}=4\right\}$ be the first "visiting" time of the Markov Chain of the states 1 or 4 . Compute

$$
E_{P_{x}}\left[\tau_{1,4}\right]
$$

for every state $x$.
d) Compute the stationary distribution of this Markov Chain - inspire yourself from Exercise 10.2.

Due date: Upload before Monday 2015.12.07 14:00.

[^0]
[^0]:    ${ }^{1}$ Not necessarily time-homogeneous.

