"STOCHASTIC PROCESSES" – HOMEWORK SHEET 11

Exercise 11.1. Let T_1, T_2, \ldots be a sequence of independent random variable all exponentially distributed with parameter $\lambda > 0$, that is,

 $dP_{T_n} = \lambda e^{-\lambda t} dt$, for every n

We define the discrete process S as

$$S_0$$
 and $S_n = \sum_{k=1}^n T_k$

which somehow model the number of persons arriving into a queue. We finally define the continuous time process

 $N_t = \max\left\{n \in \mathbb{N} \colon S_n \le t\right\}, \quad 0 \le t < \infty$

representing the number of persons in the queue at time t and define

$$\mathcal{F}_t = \sigma \left(N_s \colon s \le t \right)$$

Show that

(i) Show that for $0 \le s \le t$, it holds¹

$$P\left[S_{N_s+1} > t | \mathcal{F}_s\right] = e^{-\lambda(t-s)}$$

(ii) (Difficult, bonus) Show that for $s \leq t$, $N_t - N_s$ is a Poisson distributed random variable with parameter $\lambda(t-s)$ independent of \mathcal{F}_s^2 that is

$$E\left[1_{A}P\left[N_{t} - N_{s} \le k | \mathcal{F}_{s}\right]\right] = P\left[A\right] \sum_{j=0}^{k} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{j}}{j!}$$

for every $A \in \mathcal{F}_s$.

(iii) Show that the compensated Poisson process

$$M_t := N_t - \lambda t, \quad 0 \le t < \infty$$

is a Martingale.

$$E\left[1_{A \cap \{N_s=n\}} P\left[S_{n+1} > t | \mathcal{F}_s\right]\right] = e^{-\lambda(t-s)} P\left[A \cap \{N_s=n\}\right].$$

²Hint: You can use the previous result to show that for every $A \in \mathcal{F}_s$ and n, it holds

$$E\left[1_{A\cap\{N_{s}=n\}}P\left[N_{t}-N_{s}\leq k|\mathcal{F}_{s}\right]\right] = P\left[A\cap\{N_{s}=n\}\right]\sum_{j=0}^{k}e^{-\lambda(t-s)}\frac{(\lambda(t-s))^{j}}{j!}$$

¹Hint: Show that for every $A \in \mathcal{F}_s$ and every n, there exists $\tilde{A} \in \sigma(T_1, \ldots, T_n)$ such that $A \cap \{N_s = n\} = \tilde{A} \cap \{N_s = n\}$ and use the independence of T_{n+1} from $(S_n, 1_{\tilde{A}})$ to show that

(iv) Show that for any c > 0, it holds

$$\limsup_{t \to \infty} P\left[\sup_{s \le t} M_s \ge c\sqrt{\lambda t}\right] \le \frac{1}{c\sqrt{2\pi}}$$
(11.1)

$$\liminf_{t \to \infty} P\left[\inf_{s \le t} M_s \le -c\sqrt{\lambda t}\right] \le \frac{1}{c\sqrt{2\pi}}$$
(11.2)

$$E\left[\sup_{s\leq u\leq t} \left(\frac{M_u}{u}\right)^2\right] \leq \frac{4t\lambda}{s^2}$$
(11.3)

the latter inequality being for every 0 < s < t.³

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{0 \le t \le \infty}, P)$ be a filtrated probability space.

Definition 11.2. A stochastic process B is called a Brownian Motion if

- (I) B is adapted;
- (II) $B_0 = 0$ almost surely;
- (III) B has continuous path almost surely.⁴
- (IV) $B_t B_s$ is independent of \mathcal{F}_s and $B_t B_s \sim \mathcal{N}(0, t s)$.

Exercise 11.3. Let B be a Brownian motion. Show that

- (i) B is a martingale;
- (ii) $B_t^2 t$ is a martingale⁵
- (iii) $\exp(\sigma B_t \sigma^2 t/2)$ is a martingale for every $\sigma > 0$.
- (iv) $1/\sigma^2 B_{\sigma t}$ is a Brownian motion with respect to the filtration $(\mathcal{F}_{\sigma t})_{0 \le t < \infty}$ for all $\sigma > 0$;
- (v) For fixed s, $B_{t+s} B_s$ is a Brownian motion with respect to $(\mathcal{F}_{t+s})_{0 \le t \le \infty}$.
- (vi) Use the last two point to show that the Brownian motion is non-differentiable at any t almost surely.

Due date: Upload before Monday 2015.12.14 14:00.

³Recall Stirling's asymptotic behavior $n! \sim \sqrt{2\pi n} (n/e)^n$. ⁴That is $P[\{\omega : t \mapsto B_t(\omega) \text{ is continuous}\}] = 1$. ⁵You may use without proof that $B_t - B_s$ has the same distribution as B_{t-s} for every $0 \le s \le t$.