"Stochastic Processes" - Homework Sheet 12

Exercise 12.1 (Easy). 1) Let $X=\left(X_{t}\right)_{0 \leq t \leq T}$ be a martingale on a probability space (Ω, \mathcal{F}, P) with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$. Show that if $X_{t} \geq 0 P$-almost surely, then holds for P-almost all $\omega \in \Omega$:

$$
X_{t}(\omega)=0 \text { for some } t \quad \text { implies } \quad X_{s}(\omega)=0 \text { for every } s=t+1, \ldots, T
$$

2) Let Y_{1}, \ldots, Y_{t} be independent random variables such that $Y_{t} \sim \mathcal{N}(0,1)$ on some probability space (Ω, \mathcal{F}, P). Consider the filtration $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{t}=\sigma\left(Y_{1}, \ldots, Y_{t}\right)$. We consider the process

$$
S_{0}>0, \quad S_{t}=S_{0} \exp \left(\sum_{s=1}^{t}\left(\sigma_{s} Y_{s}+\mu_{s}\right)\right)
$$

where σ_{t}, μ_{t} are constant for $t=1, \ldots, T$ such that $\sigma_{t} \neq 0$. Let further

$$
S_{t}^{0}=(1+r)^{t}
$$

for some constant $r>-1$. For which values of σ_{t} is the price process

$$
X_{t}=\frac{S_{t}}{S_{t}^{0}}
$$

a martingale.
Exercise 12.2 (Insider Problem). Let Y_{1}, \ldots, Y_{T} be independent identically distributed random variables such that $E\left[Y_{t}\right]=0$ for every t and not identically constant on some probability space (Ω, \mathcal{F}, P). We consider the filtration $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{t}=\sigma\left(Y_{1}, \ldots, Y_{t}\right)$ and process

$$
X_{0}:=1, \quad X_{t}:=X_{0}+\sum_{s=1}^{t} Y_{s}
$$

We interpret this process as a stock price which is fair in the sense that it is a martingale and therefore does not brings any gain or loss in expectation. And for every strategy H, that is predictable process, the investment gain $H \bullet X_{T}$ at time T does not brings in average more than $H_{0} X_{0}$ due to Doob's optional sampling theorem.

We extend the filtration with the information provided by X_{T}, that is

$$
\tilde{\mathcal{F}}_{t}=\sigma\left(\mathcal{F}_{t}, X_{T}\right), \quad t=0, \ldots, T
$$

This can be interpreted as the information of an insider knowing for whatever reason the terminal value of the price at time T. We denote the non-insider filtration \mathbb{F} and the insider filtration $\tilde{\mathbb{F}}$. Show that
(i) X is a martingale under the filtration \mathbb{F}. Show that X can not be a martingale under the insider filtration $\tilde{\mathbb{F}}$. However, the process

$$
\tilde{X}_{t}=X_{t}-\sum_{s=0}^{t-1} \frac{X_{T}-X_{s}}{T-s}, \quad t=0, \ldots, T
$$

is a martingale under $\tilde{\mathbb{F}}$.
(ii) With the information about the terminal value X_{T} of the stock, it is possible to realize arbitrage gains. It means that you can find a predictable process but with respect to $\tilde{\mathbb{F}}$ such that starting with 0 money, that is $H_{0}=0$, you end up with positive gains and even strict gains with strict positive probability. That is

$$
P\left[H \bullet X_{T} \geq 0\right]=1 \quad \text { and } \quad P\left[H \bullet X_{T}>0\right]>0
$$

Find the best "insider strategy" - that is $\tilde{\mathbb{F}}$-predictable process H with $H_{0}=0$ - that brings the maximum of gains among the insider strategies such that $\left|H_{s}\right| \leq 1$ for every $s=1, \ldots, T$.

Exercise 12.3. Let $f:[0, \infty[\rightarrow \mathbb{R}$ be a function. We define

- the variations of f as the function

$$
S_{t}=\sup _{\Pi=\left\{0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=t\right\}} \sum_{k=1}^{n}\left|f_{t_{k}}-f_{t_{k-1}}\right|, \quad t \in[0, \infty[
$$

- the quadratic variations of f as

$$
\langle f\rangle_{t}=\sup _{\Pi=\left\{0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=t\right\}} \sum_{k=1}^{n}\left|f_{t_{k}}-f_{t_{k-1}}\right|^{2}, \quad t \in[0, \infty[
$$

We say that f has

- bounded variations if $S_{t}<\infty$ for every t;
- quadratic variations if $\langle f\rangle_{t}<\infty$ for every t.
(i) show that if f has bounded variations, then

$$
S_{t}-f_{t} \quad \text { and } \quad S_{t}+f_{t}
$$

are both increasing functions.
(ii) Show that if $t \mapsto f_{t}$ is Lipschitz continuous, then f has bounded variations;
(iii) Show that if $t \mapsto f_{t}$ has bounded variations, then $\langle f\rangle_{t}=0$ for every t.

Exercise 12.4. Let B be the Brownian Motion (as in the previous exercise sheet) and consider a fixed time horizon $T<\infty$. Recall that you showed that $\langle B\rangle_{t}=t$, hence $d\langle B\rangle_{t}=d t$. Hence we will consider the space $\mathcal{L}^{2}:=\mathcal{L}^{2}(P \otimes d T)$ of those processes $H=\left(H_{t}\right)_{0 \leq t \leq T}$ which are progressive and such that

$$
E\left[\int_{0}^{T} H_{t}^{2} d\langle B\rangle_{t}\right]=E\left[\int_{0}^{T} H_{t}^{2} d t\right]<\infty .
$$

For a fixed time horizon $T<\infty$, define the process

$$
H_{t}^{n}=\sum_{k=1}^{n} B_{t_{k-1}^{n}} 1_{]_{k-1}^{n}, t_{k}^{n}\right]}(t), \quad 0 \leq t \leq T
$$

where $t_{k}^{n}=k T / n, k=0, \ldots, n$.
(i) Though $B_{t_{k-1}^{n}}$ is $\mathcal{F}_{t_{k-1}^{n}}$-measurable, it is now uniformly bounded and therefore not element of \mathcal{S} as given in the lecture. Show however that it belongs to \mathcal{L}^{2}.
(ii) Show that $H^{n} \rightarrow B$ in \mathcal{L}^{2}-for the L^{2}-norm. In particular, $B \in \mathcal{L}^{2}$.
(iii) Show that there exists a random variable $I_{T} \in \mathcal{L}^{2}$ such that

$$
\left(H^{n} \bullet B\right)_{T}=\sum_{k=1}^{n} H_{t_{k}^{n}}^{n}\left(B_{t_{k}^{n}}-B_{t_{k-1}^{n}}\right)=\sum_{k=1}^{n} B_{t_{k-1}^{n}}\left(B_{t_{k}^{n}}-B_{t_{k-1}^{n}}\right)
$$

converges in \mathcal{L}^{2} to I_{T}. We denote this random variable the stochastic integral of B, that is

$$
I_{T}:=\int_{0}^{T} B_{t} d B_{t}
$$

(iv) Using the relation $b(a-b)=\left(a^{2}-b^{2}-(a-b)^{2}\right) / 2$, show using the approximation above that

$$
\int_{0}^{T} B_{t} d B_{t}=\frac{1}{2}\left(B_{T}^{2}-T\right)
$$

Due date: Upload before Monday 2015.12.23 14:00.

