"STOCHASTIC PROCESSES" – HOMEWORK SHEET 12

Exercise 12.1 (Easy). 1) Let $X = (X_t)_{0 \le t \le T}$ be a martingale on a probability space (Ω, \mathcal{F}, P) with a filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T}$. Show that if $X_t \ge 0$ P-almost surely, then holds for P-almost all $\omega \in \Omega$:

 $X_t(\omega) = 0$ for some t implies $X_s(\omega) = 0$ for every $s = t + 1, \dots, T$

2) Let Y_1, \ldots, Y_t be independent random variables such that $Y_t \sim \mathcal{N}(0, 1)$ on some probability space (Ω, \mathcal{F}, P) . Consider the filtration $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_t = \sigma(Y_1, \ldots, Y_t)$. We consider the process

$$S_0 > 0, \quad S_t = S_0 \exp\left(\sum_{s=1}^t \left(\sigma_s Y_s + \mu_s\right)\right)$$

where σ_t, μ_t are constant for t = 1, ..., T such that $\sigma_t \neq 0$. Let further

$$S_t^0 = (1+r)^2$$

for some constant r > -1. For which values of σ_t is the price process

$$X_t = \frac{S_t}{S_t^0}$$

a martingale.

Exercise 12.2 (Insider Problem). Let Y_1, \ldots, Y_T be independent identically distributed random variables such that $E[Y_t] = 0$ for every t and not identically constant on some probability space (Ω, \mathcal{F}, P) . We consider the filtration $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_t = \sigma(Y_1, \ldots, Y_t)$ and process

$$X_0 := 1, \quad X_t := X_0 + \sum_{s=1}^t Y_s.$$

We interpret this process as a stock price which is fair in the sense that it is a martingale and therefore does not brings any gain or loss in expectation. And for every strategy H, that is predictable process, the investment gain $H \bullet X_T$ at time T does not brings in average more than H_0X_0 due to Doob's optional sampling theorem.

We extend the filtration with the information provided by X_T , that is

$$\tilde{\mathcal{F}}_t = \sigma(\mathcal{F}_t, X_T), \quad t = 0, \dots, T$$

This can be interpreted as the information of an insider knowing for whatever reason the terminal value of the price at time T. We denote the non-insider filtration \mathbb{F} and the insider filtration $\tilde{\mathbb{F}}$. Show that

(i) X is a martingale under the filtration \mathbb{F} . Show that X can not be a martingale under the insider filtration $\tilde{\mathbb{F}}$. However, the process

$$\tilde{X}_t = X_t - \sum_{s=0}^{t-1} \frac{X_T - X_s}{T - s}, \quad t = 0, \dots, T$$

is a martingale under $\tilde{\mathbb{F}}$.

(ii) With the information about the terminal value X_T of the stock, it is possible to realize arbitrage gains. It means that you can find a predictable process but with respect to $\tilde{\mathbb{F}}$ such that starting with 0 money, that is $H_0 = 0$, you end up with positive gains and even strict gains with strict positive probability. That is

$$P[H \bullet X_T \ge 0] = 1$$
 and $P[H \bullet X_T > 0] > 0$

Find the best "insider strategy" – that is $\tilde{\mathbb{F}}$ -predictable process H with $H_0 = 0$ – that brings the maximum of gains among the insider strategies such that $|H_s| \leq 1$ for every $s = 1, \ldots, T$.

Exercise 12.3. Let $f : [0, \infty] \to \mathbb{R}$ be a function. We define

• the variations of f as the function

$$S_t = \sup_{\Pi = \{0 = t_0 \le t_1 \le \dots \le t_n = t\}} \sum_{k=1}^n \left| f_{t_k} - f_{t_{k-1}} \right|, \quad t \in [0, \infty[$$

• the quadratic variations of f as

$$\langle f \rangle_t = \sup_{\Pi = \{0 = t_0 \le t_1 \le \dots \le t_n = t\}} \sum_{k=1}^n \left| f_{t_k} - f_{t_{k-1}} \right|^2, \quad t \in [0, \infty[$$

We say that f has

- bounded variations if $S_t < \infty$ for every t;
- quadratic variations if $\langle f \rangle_t < \infty$ for every t.
- (i) show that if f has bounded variations, then

$$S_t - f_t$$
 and $S_t + f_t$

are both increasing functions.

- (ii) Show that if $t \mapsto f_t$ is Lipschitz continuous, then f has bounded variations;
- (iii) Show that if $t \mapsto f_t$ has bounded variations, then $\langle f \rangle_t = 0$ for every t.

Exercise 12.4. Let B be the Brownian Motion (as in the previous exercise sheet) and consider a fixed time horizon $T < \infty$. Recall that you showed that $\langle B \rangle_t = t$, hence $d \langle B \rangle_t = dt$. Hence we will consider the space $\mathcal{L}^2 := \mathcal{L}^2(P \otimes dT)$ of those processes $H = (H_t)_{0 \le t \le T}$ which are progressive and such that

$$E\left[\int_{0}^{T}H_{t}^{2}d\langle B\rangle_{t}\right]=E\left[\int_{0}^{T}H_{t}^{2}dt\right]<\infty.$$

For a fixed time horizon $T < \infty$, define the process

$$H_t^n = \sum_{k=1}^n B_{t_{k-1}^n} \mathbb{1}_{]t_{k-1}^n, t_k^n]}(t), \quad 0 \le t \le T$$

where $t_k^n = kT/n$, k = 0, ..., n.

(i) Though $B_{t_{k-1}^n}$ is $\mathcal{F}_{t_{k-1}^n}$ -measurable, it is now uniformly bounded and therefore not element of S as given in the lecture. Show however that it belongs to \mathcal{L}^2 .

- (ii) Show that $H^n \to B$ in \mathcal{L}^2 for the L^2 -norm. In particular, $B \in \mathcal{L}^2$.
- (iii) Show that there exists a random variable $I_T \in \mathcal{L}^2$ such that

$$(H^n \bullet B)_T = \sum_{k=1}^n H^n_{t^n_k} \left(B_{t^n_k} - B_{t^n_{k-1}} \right) = \sum_{k=1}^n B_{t^n_{k-1}} \left(B_{t^n_k} - B_{t^n_{k-1}} \right)$$

converges in \mathcal{L}^2 to I_T . We denote this random variable the stochastic integral of B, that is

$$I_T := \int_0^T B_t dB_t$$

(iv) Using the relation $b(a - b) = (a^2 - b^2 - (a - b)^2)/2$, show using the approximation above that

$$\int_{0}^{T} B_t dB_t = \frac{1}{2} \left(B_T^2 - T \right)$$

Due date: Upload before Monday 2015.12.23 14:00.