"Stochastic Processes" - Homework Sheet 13

Given a continuous square integrable martingale M and a process $H \in \mathcal{L}^{2}(P \otimes d\langle M\rangle)$ we denote the stochastic integral of H with respect to M either

$$
H \bullet M \text { or } \int H d M \text { or } \int H_{s} d M_{s}
$$

Exercise 13.1. Let $M \in \mathcal{M}_{c}^{2}, \alpha \in \mathbb{R}$ and $G, H \in \mathcal{L}^{2}(P \otimes d\langle M\rangle)$. Show that

- $(\alpha H+G) \bullet M=\alpha H \bullet M+G \bullet M$;
- $\left(1_{[0, \tau]} H\right) \bullet M=H \bullet M^{\tau}=(H \bullet M)^{\tau}$.

For $M, N \in \mathcal{M}_{c}^{2}$, we define the co-variations $\langle M, N\rangle$ of M and N by means of the polar formula

$$
\langle M, N\rangle=\frac{\langle M+N\rangle-\langle M-N\rangle}{4}
$$

which is a continuous process of bounded variations - not necessarily increasing.
Exercise 13.2. Show for $G, H \in \mathcal{S}$ and $M, N \in \mathcal{M}_{c}^{2}$ that it holds

$$
\begin{aligned}
\left\langle\int G d M\right\rangle & =\int G_{s}^{2} d\langle M\rangle_{s} \\
\left\langle\int G d M, \int H d N\right\rangle & =\int G_{s} d\left\langle M, \int H d N\right\rangle_{s} \\
& =\int G_{s} H_{s} d\langle M, N\rangle_{s}
\end{aligned}
$$

Always with $G, H \in \mathcal{S}$, and the Doob-Meyer decomposition, follows the chain rule

$$
\int G(H \bullet M)=\int G H d M
$$

Exercise 13.3. Let $M \in \mathcal{M}_{c}^{2}$. We know from the Doob-Meyer decomposition that

$$
M^{2}=\tilde{M}+\langle M\rangle
$$

for some martingale \tilde{M}. Show using Ito's formula that

$$
\tilde{M}=2 \int M_{s} d M_{s}
$$

Exercise 13.4. Let B be a Brownian motion.

- Show using Ito's Formula that the process X given by

$$
X_{t}=e^{t / 2} \cos \left(B_{t}\right)
$$

is a martingale.

- Consider the following stochastic differential equation

$$
d X_{t}=X_{t}\left(\mu_{t} d t+\sigma_{t} d B_{t}\right), \quad X_{0}=1
$$

where μ_{t} and σ_{t} are uniformly bounded progressive processes and $\sigma_{t}>\varepsilon>0$ for every t. Show using Ito's formula that it has a solution given by

$$
X_{t}=\exp \left(\int_{0}^{t}\left(\mu_{s}-\frac{1}{2} \sigma_{s}^{2}\right) d s+\int_{0}^{t} \sigma_{s} d B_{s}\right)
$$

- Using the previous point show that

$$
X_{t}=\exp \left(-\frac{1}{2} \int_{0}^{t} \sigma_{s}^{2} d s+\int_{0}^{t} \sigma_{s} d B_{s}\right)
$$

is a martingale.

- Consider the following stochastic differential equation

$$
d X_{t}=-\theta X_{t} d t+\sigma d B_{t}, \quad X_{0}=x
$$

for $\theta, \sigma>0$. This stochastic differential equation describes exponential convergence to 0 . Show that it has a solution by considering the process $U_{t}=e^{\theta t} X_{t}$.

Exercise 13.5. Let B be a Brownian motion on a filtrated probability space and for a fixed time horizon $T \in \mathbb{R}_{+}$, let $f:[0, T] \rightarrow[0, T]$ be a measurable function - note that f is deterministic, that is do not depend on the state $\omega \in \Omega-$ such that

$$
E\left[\int_{0}^{T} f_{t}^{2} d t\right]<\infty
$$

For $0 \leq a \leq b \leq T$, define

$$
J_{a, b}=\int_{a}^{b} f_{s} d B_{s}
$$

a) Show that $J_{a, b}$ is well defined, and normally distributed $\mathcal{N}(\mu, \sigma)$ where ${ }^{1}$

$$
\mu=0 \quad \text { and } \quad \sigma^{2}=\int_{a}^{b} f_{s}^{2} d s
$$

[^0]b) Show further that for $0 \leq a \leq b \leq c \leq d \leq T$, the random vector $\left(J_{a, b}, J_{c, d}\right)$ is a Gaussian vector, that is, every linear combination
$$
\alpha J_{a, b}+\beta J_{c, d}
$$
is normally distributed for every choice of $\alpha, \beta \in \mathbb{R}$ - the case where $\alpha=\beta=0$ being the previous trivial case with point mass 1 at 0 . Show finally that $J_{a, b}$ is independent of $J_{c, d}$.

Hint: Show first the case where f is piecewise constant. Then approximate f by a sequence $\left(f^{n}\right)$ of piecewise constant functions and shows that it converges to the good distribution.

Exercise 13.6 (Difficult). A function $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is called locally Hölder continuous of order α at $x \in D$ if there exists $\delta>0$ and $C>0$ such that $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ for all $y \in D$ with $|x-y| \leq \delta$. A function $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is called locally Hölder continuous of order α, if it is locally Hölder continuous of order α at each $x \in D$.
a) Let $Z \sim \mathcal{N}(0,1)$. Prove that $P[|Z| \leq \varepsilon] \leq \varepsilon$ for any $\varepsilon \geq 0$.
b) Let B be a Brownian motion (without the assumption that it has continuous paths). Prove that for any $\alpha>1 / 2, P$-almost all path of the Brownian motion B are nowhere on $[0,1]$ locally Höldercontinuous of order α.
Hint: Take any $M \in \mathbb{N}$ satisfying $M(\alpha-1 / 2)>1$ and show that the set

$$
\left\{\omega: t \mapsto B_{t}(\omega) \text { is locally Hölder continuous at some } t \in[0,1]\right\}
$$

is contained in the set

$$
\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcap_{k=0, \ldots, n-M} \bigcap_{j=1, \ldots, M}\left\{\left|B_{\frac{k+j}{n}}-B_{\frac{k+j-1}{n}}\right| \leq C \frac{1}{n^{\alpha}}\right\}
$$

c) The Kolmogorov-Čentsov theorem states that any process X on $[0, T]$ satisfying

$$
E\left[\left|X_{t}-X_{s}\right|^{\gamma}\right] \leq C|t-s|^{1+\beta}, \quad 0 \leq s, t \leq T
$$

where $\gamma, \beta, C>0$, has a version which is locally Hölder-continuous of order α for all $\alpha<\beta / \gamma$. Use this to deduce that Brownian motion has for every $\alpha<1 / 2$ a version which is locally Höldercontinuous of order α.

Due date: Optional

[^0]: ${ }^{1}$ The case where $\int_{a}^{b} f_{s}^{2} d s=0$ being a trivial case where the distribution has 0 variance and point mass 1 at 0 .

