"STOCHASTIC PROCESSES" – HOMEWORK SHEET 13

Given a continuous square integrable martingale M and a process $H \in \mathcal{L}^2(P \otimes d\langle M \rangle)$ we denote the stochastic integral of H with respect to M either

$$H \bullet M$$
 or $\int H dM$ or $\int H_s dM_s$

Exercise 13.1. Let $M \in \mathcal{M}^2_c$, $\alpha \in \mathbb{R}$ and $G, H \in \mathcal{L}^2(P \otimes d\langle M \rangle)$. Show that

- $(\alpha H + G) \bullet M = \alpha H \bullet M + G \bullet M;$
- $(1_{[0,\tau]}H) \bullet M = H \bullet M^{\tau} = (H \bullet M)^{\tau}.$

For $M, N \in \mathcal{M}^2_c$, we define the co-variations $\langle M, N \rangle$ of M and N by means of the polar formula

$$\langle M, N \rangle = \frac{\langle M + N \rangle - \langle M - N \rangle}{4}$$

which is a continuous process of bounded variations - not necessarily increasing.

Exercise 13.2. Show for $G, H \in S$ and $M, N \in \mathcal{M}^2_c$ that it holds

$$\begin{split} \langle \int G dM \rangle &= \int G_s^2 d\langle M \rangle_s \\ \langle \int G dM, \int H dN \rangle &= \int G_s d\langle M, \int H dN \rangle_s \\ &= \int G_s H_s d\langle M, N \rangle_s \end{split}$$

Always with $G, H \in S$, and the Doob-Meyer decomposition, follows the chain rule

$$\int G\left(H\bullet M\right) = \int GHdM$$

Exercise 13.3. Let $M \in \mathcal{M}^2_c$. We know from the Doob-Meyer decomposition that

$$M^2 = \tilde{M} + \langle M \rangle$$

for some martingale \tilde{M} . Show using Ito's formula that

$$\tilde{M} = 2 \int M_s dM_s$$

Exercise 13.4. Let B be a Brownian motion.

• Show using Ito's Formula that the process X given by

$$X_t = e^{t/2} \cos\left(B_t\right)$$

is a martingale.

• Consider the following stochastic differential equation

$$dX_t = X_t \left(\mu_t dt + \sigma_t dB_t \right), \quad X_0 = 1$$

where μ_t and σ_t are uniformly bounded progressive processes and $\sigma_t > \varepsilon > 0$ for every t. Show using Ito's formula that it has a solution given by

$$X_t = \exp\left(\int_0^t \left(\mu_s - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dB_s\right)$$

• Using the previous point show that

$$X_t = \exp\left(-\frac{1}{2}\int_0^t \sigma_s^2 ds + \int_0^t \sigma_s dB_s\right)$$

is a martingale.

• Consider the following stochastic differential equation

$$dX_t = -\theta X_t dt + \sigma dB_t, \quad X_0 = x$$

for $\theta, \sigma > 0$. This stochastic differential equation describes exponential convergence to 0. Show that it has a solution by considering the process $U_t = e^{\theta t} X_t$.

Exercise 13.5. Let *B* be a Brownian motion on a filtrated probability space and for a fixed time horizon $T \in \mathbb{R}_+$, let $f : [0,T] \to [0,T]$ be a measurable function – note that *f* is deterministic, that is do not depend on the state $\omega \in \Omega$ – such that

$$E\left[\int\limits_{0}^{T}f_{t}^{2}dt\right]<\infty$$

For $0 \le a \le b \le T$, define

$$J_{a,b} = \int_{a}^{b} f_s dB_s$$

a) Show that $J_{a,b}$ is well defined, and normally distributed $\mathcal{N}(\mu, \sigma)$ where¹

$$\mu = 0$$
 and $\sigma^2 = \int\limits_a^b f_s^2 ds$

¹The case where $\int_a^b f_s^2 ds = 0$ being a trivial case where the distribution has 0 variance and point mass 1 at 0.

b) Show further that for $0 \le a \le b \le c \le d \le T$, the random vector $(J_{a,b}, J_{c,d})$ is a Gaussian vector, that is, every linear combination

 $\alpha J_{a,b} + \beta J_{c,d}$

is normally distributed for every choice of $\alpha, \beta \in \mathbb{R}$ – the case where $\alpha = \beta = 0$ being the previous trivial case with point mass 1 at 0. Show finally that $J_{a,b}$ is independent of $J_{c,d}$.

Hint: Show first the case where f is piecewise constant. Then approximate f by a sequence (f^n) of piecewise constant functions and shows that it converges to the good distribution.

Exercise 13.6 (Difficult). A function $f : D \subseteq \mathbb{R} \to \mathbb{R}$ is called locally Hölder continuous of order α at $x \in D$ if there exists $\delta > 0$ and C > 0 such that $|f(x) - f(y)| \leq C|x - y|^{\alpha}$ for all $y \in D$ with $|x - y| \leq \delta$. A function $f : D \subseteq \mathbb{R} \to \mathbb{R}$ is called locally Hölder continuous of order α , if it is locally Hölder continuous of order α , if it is locally Hölder continuous of order α at each $x \in D$.

- a) Let $Z \sim \mathcal{N}(0, 1)$. Prove that $P[|Z| \leq \varepsilon] \leq \varepsilon$ for any $\varepsilon \geq 0$.
- b) Let B be a Brownian motion (without the assumption that it has continuous paths). Prove that for any $\alpha > 1/2$, P-almost all path of the Brownian motion B are nowhere on [0,1] locally Hölder-continuous of order α .

Hint: Take any $M \in \mathbb{N}$ satisfying $M(\alpha - 1/2) > 1$ and show that the set

 $\{\omega: t \mapsto B_t(\omega) \text{ is locally Hölder continuous at some } t \in [0, 1]\}$

is contained in the set

$$\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \bigcap_{k=0,\dots,n-M} \bigcap_{j=1,\dots,M} \left\{ \left| B_{\frac{k+j}{n}} - B_{\frac{k+j-1}{n}} \right| \le C \frac{1}{n^{\alpha}} \right\}$$

.

c) The Kolmogorov-Čentsov theorem states that any process X on [0,T] satisfying

$$E[|X_t - X_s|^{\gamma}] \le C |t - s|^{1+\beta}, \quad 0 \le s, t \le T$$

where $\gamma, \beta, C > 0$, has a version which is locally Hölder-continuous of order α for all $\alpha < \beta/\gamma$. Use this to deduce that Brownian motion has for every $\alpha < 1/2$ a version which is locally Höldercontinuous of order α .

Due date: Optional