
1. Probability Measure and Integration Theory in a Nutshell

1.1. Measurable Space and Measurable Functions
Definition 1.1. A measurable space is a tuple (Ω,F) where Ω is a set and F a σ-algebra on Ω, that is, a
collection of subset of Ω such that

(i) ∅ ∈ F ;1

(ii) F is closed under complementation. That is, Ac ∈ F whenever A ∈ F ;

(iii) F is closed under countable union. That is, ∪An ∈ F for every sequence (An) of elements in F .

In probability theory, the components of a measurable space have the following meaning.

• Ω is a set modelling different states of the world about which there is uncertainty concerning its real-
ization. It is called the state space. For instance:

– Coin flipping. Let Ω = {H,T} where H and T denotes the states “Head occurs” and “Tail occurs”
as the outcome of throwing a coin.

– Temperature tomorrow. Let Ω = R, where x ∈ Ω represents the temperature at 8:00 am tomorrow.

– Financial decision. Let Ω = [−1, 10]2 where for (x, y) ∈ Ω, x and y represents the interest rate that
the central banks of USA and EU, respectively, will fix next month.

• F is the collection of events, an event being a collection of states that might happen. Following the
previous examples

– A = {H} is the event that head will occur;

– A = [13, 19] is the event that tomorrow at 8:00am, the temperature will lie between 13 and 19
degrees;

– A = [0.25, 0.75]× [0.9, 1.8] ∪ {1} × [1.7, 2.1] is the event that next month the USA fix an interest
rate between 0.25% and 0.75% while the EU fix one between 0.9% and 1.8%, OR the USA fix an
interest rate of 1% while the EU fix one between 1.7% and 2.1%.

Remark 1.2. The following points follows from the definition of a σ-algebra:

• Ω ∈ F . Indeed, ∅ ∈ F by (i) therefore Ω = ∅c ∈ F by condition (ii).

• F is closed under countable intersection. That is, ∩An ∈ F for every sequence (An) of elements
in F . Indeed, (iii) yields Ac

n ∈ F for every n, therefore, ∪Ac
n ∈ F . Using (ii), it follows that

(∪Ac
n)

c ∈ F . However (∪Ac
n)

c = ∩(Ac
n)

c = ∩An. �

Lemma 1.3. Let (Fi) be an arbitrary non-empty collections of σ-algebras on Ω. It holds

F := ∩Fi = {A ⊆ Ω : A ∈ Fi for all i}

is a σ-algebra on Ω. Given a collection C of subsets of Ω, there exists a smallest σ-algebra that contains
C which is denoted by σ(C).

1Note that this assumption follows from (ii) and (iii) when F is supposed to be non-empty. Why?
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Proof. Let us show that F is a σ-algebra. Since Fi is a σ-algebra for every i, it follows from condition (i)
that ∅ ∈ Fi for every i and therefore ∅ ∈ F . Also, for A ∈ F , that is, A ∈ Fi for every i, condition (ii)
yields Ac ∈ Fi for every i, which, by definition, means Ac ∈ F . Finally, for a sequence (An) of elements
in F , it follows that An ∈ Fi for every i and every n. Hence, ∪An ∈ Fi for every i by condition (iii).
Thus, ∪An ∈ F . As for the second assertion, note that the power set 2Ω := {A : A ⊆ Ω} of Ω is itself
a σ-algebra that contains any collection of subsets of Ω, in particular C. Hence, the intersection over all
σ-algebra that contains C is non-empty and therefore, by what has been just proved, σ(C) is a σ-algebra.
The fact that it is the smaller one in terms of inclusion follows from the definition. �

Definition 1.4 (Dynkin system). Let (Ω,F) be a measurable space. A collection of subsets C of Ω is
called a

(i) λ- or Dynkin-system if

• Ω ∈ C;

• Bc ∈ C whenever B ∈ C;

• ∪An ∈ F for every sequence of pairwise disjoints events (An) ⊆ C.

(ii) π-system if

• A ∩B ∈ F whenever A,B ∈ F .

Remark 1.5. Just as in Lemma 1.3, arbitrary intersection of π-system or λ-system are themselves π-
system or λ-system, respectively. Given a collection C of subset of Ω, we denote by π(C) and λ(C) the
smallest π-system and λ-system containing C, respectively. Clearly, any σ-algebra is a π- as well as a
λ-system. �

Theorem 1.6. Let Ω be a state space and P be a π-system. Then, the λ-system generated by P is a
σ-algebra, that is λ(P) = σ(P).

Proof. We first show that if C is a λ-system closed under finite intersection, then it is a σ-algebra. By
definition of a λ-system, we just have to check the stability under arbitrary countable union. To this end,
let (An) be a sequence of elements in C and define Bn = An \ (∪k<nAk) = An ∩ (∩n<kA

c
n), n > 1

and B1 = A1. As C is closed under complementation and we supposed that C is closed under finite
intersection, it follows that (Bn) is a sequence of elements in C. From ∪Bn = ∪An and (Bn) pairwise
disjoint, it follows from the λ-system assumption on C that ∪An = ∪Bn ∈ C.
Now, it clearly holds λ(P) ⊆ σ(P). From what we just showed, we just have to check that λ(P) is closed
under finite intersection, since then λ(P) would be a σ-algebra containing P and so σ(P) ⊆ λ(P). For
D ∈ λ(P), define DD = {A ⊆ Ω : A ∩D ∈ λ(P)} which is a λ-system. Indeed Ω ∈ DD. If A ∈ DD,
it follows that Ac ∩ D = (Ac ∪ Dc) ∩ D = (A ∩ D)c ∩ D = ((A ∩D) ∪Dc)

c. By assumption,
A ∩ D ∈ λ(P) and since λ(P) is stable under complementation and countable intersection of disjoints
elements, it follows that Ac∩D ∈ λ(P) and therefore Ac ∈ DD. Let now (An) be a sequence of pairwise
disjoints elements in DD. From the stability of λ(P) under countable union of pairwise disjoint elements
and the fact that (∪An)∩D = ∪(An ∩D), it follows that ∪An ∈ DD. Hence, DD is indeed a λ-system.
Since P is stable under finite intersection it follows that P ⊆ DB for every B ∈ P . Hence, λ(P) ⊆ DB

for every B ∈ P . In particular, for every A ∈ λ(P) and B ∈ P it holds A ∩ B ∈ λ(P) ⊆ DB . Per
definition, this also means that B ∈ DA for every B ∈ P and A ∈ λ(P) showing that P ⊆ DA for every
A ∈ λ(P). Hence λ(P) ⊆ DA for every A ∈ λ(P). Thus, for A,B ∈ λ(P) it holds B ∈ DA which per
definition means A ∩ B ∈ λ(P) showing that λ(P) is closed under finite intersection and therefore, by
the first step of the proof, a σ-algebra. �

From their definition, σ-algebras as well as π-systems or λ-systems are structures of set, similar to another
very important structure of set, namely topologies.
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Definition 1.7. A topological space is a tuple (Ω,T) where T is a collection of subsets of a set Ω such
that

(i) ∅,Ω are in T;

(ii) T is closed under finite intersection, that is, O1 ∩O2 ∈ T whenever O1, O2 ∈ T;

(iii) T is closed under arbitrary union, that is, ∪Oi ∈ T for any arbitrary family (Oi) of elements in T.

Elements of T are called open sets. The complement of any open set is called a closed set.

A topology is stable under arbitrary union, finite intersection but not complementation. As σ-algebras,
topologies are stable under arbitrary intersections, and therefore we can define the smallest topology
T(B) generated by a collection B of subsets of Ω. Just as dynkin systems, or semi-rings and ring as we
will see later, some smaller structures often describe topologies, namely, topological bases.

Definition 1.8. A topological base on a set Ω is a collection B of subsets of Ω such that

(i) ∪{O : O ∈ B} = Ω;

(ii) for every x ∈ O1 ∩ O2 for O1, O2 ∈ B, there exists O3 ∈ B with x ∈ O3 and such that
O3 ⊆ O1 ∩O2.

Lemma 1.9. Let B be a topological base, and T(B) be the topology generated by B. It follows that
T(B) is exactly the collection of arbitrary union of elements in B.

Proof. Denote by U(B) the collection of arbitrary unions of elements in B. By definition of T(B), it
follows that B ⊆ U(B) ⊆ T(B). Since T(B) is the smallest topology containing B, we just have
to show that U(B) is a topology itself. First Ω ∈ U(B) due to the first assumption of a topological
base. As any union over an empty family is empty, it also follows that ∅ ∈ U(B). By definition,
U(B) is stable under arbitrary union. We are left to show that U(B) is stable under intersection. Let
Õ1 = ∪Oi, Õ2 = ∪Oj ∈ U(B) for families (Oi), (Oj) of elements in B. It follows that Õ1 ∩ Õ2 =
∪i,j(Oi ∩ Oj). By definition of a topological base, for every i, j and every x ∈ Oi ∩ Oj , there exists
Ox

i,j ∈ B such that x ∈ Oi,j ⊆ Oi ∩ Oj . Hence, ∪x∈Oi∩Oj
Ox

i,j = Oi ∩ Oj from which follows that
Õ1 ∩ Õ2 = ∪i,j,x∈Oi∩Oj

Ox
i,j ∈ U(B) showing that U(B) is a topology. �

For a set A ⊆ Ω, we define the interior and closure of A as

Int(A) = ∪{O : O open with O ⊆ A}, Cl(A) = ∩{F : F closed and A ⊆ F}
Clearly, A is open or closed if, and only if, A = Int(A) or A = Cl(A), respectively.

Lemma 1.10. Let A ⊆ Ω be a subset of Ω which topology is generated by a topological base B. Then it
holds

Int(A) = ∪ {O : O ⊆ A,O ∈ B} = [Cl(Ac)]
c

Cl(A) = {ω : ω ∈ O,O ∈ B and O ∩A �= ∅}
Proof. The first equality for the interior follows from the fact that every open set in Ω is an arbitrary
union of elements in B. The second equality follows from de Morgan’s law

Int(A) = [[∪ {O : O ⊆ A,O open}]c]c = [∩ {Oc : Ac ⊆ Oc, O open}]c

= [∩ {F : Ac ⊆ F, F closed}]c = [Cl(Ac)]
c
.

As for the closure equality, it holds

Cl(A) = [Int(Ac)]
c
= [∪ {O : O ⊆ Ac, O ∈ B}]c = [{ω : ω ∈ O,O ⊆ Ac for some O ∈ B}]c

= [{ω : ω ∈ O,O ∩A = ∅ for some O ∈ B}]c = {ω : ω ∈ O,O ∈ B and O ∩A �= ∅} . �
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Example 1.11. A metric space (Ω, d) is a set Ω together with a function d : Ω × Ω → [0,∞[ – called
metric or distance – with the properties

(i) identity: d(ω,ω�) = 0 if, and only if, ω = ω�;

(ii) symmetry: d(ω,ω�) = d(ω�,ω);

(iii) triangular inequality: d(ω,ω��) ≤ d(ω,ω�) + d(ω�,ω��).

The collection B of open balls Bn(ω) := {ω� : d(ω,ω�) < 1/n} for n ∈ N and ω ∈ Ω is a topological
base due to the triangular inequality. The topology generated by this family is called the metric topology.
The nice thing about metric spaces, is that we can characterize the topology by converging sequences.
Indeed, a set F ⊆ Ω is closed if, and only if, the limit of each converging sequence2 of elements in F
also belongs to F . This follows from Lemma 1.10, the definitions of the open balls and the triangular
inequality.
In Rd, the balls B1/n(q) = {x ∈ R2 : d(x, q) = �x− q� < 1/n} where n ∈ N and q ∈ Qd constitute a
topological basis.3 The resulting topology is the usual euclidean topology on Rd. A particularity of this
topology is that the topological base is countable.4 It follows that any open set in Rd can be written as a
countable union of open balls.
In general, if a metric space (Ω, d) is separable, that is, there exists a countable dense subset5 (ωn) of
elements in Ω, then the countable collection of open balls B1/n(ωn) = {ω ∈ Ω : d(ωn,ω) < 1/m} for
m,n ∈ N is a countable topological base of Ω. Such spaces play a central role in probability theory since
the Borel σ-algebra, see following definition, coincide with the σ-algebra generated by this countable
family of balls. ♦

Definition 1.12. Let (Ω,T) be a topological space. The σ-algebra B(T) generated by the open sets of Ω
is called the Borel σ-algebra.6

Remark 1.13. In the case of Rd, since it is generated by the countable family B of open balls centered
around a rational, it follows that the Borel σ-algebra B on Rd is fully generated by the topological base,
that is B = σ(B). �

Exercice 1.14. Let Ω = R, and F = B(R) the Borel σ-algebra of R, that is the σ-algebra generated by
the collection C = {O : O open set in R}. Show that B(R) = σ(A) whenever

A = {F : F closed subset of R}
A = {]a, b[ : a ≤ b with a, b ∈ R} A = {[a, b] : a ≤ b with a, b ∈ R}
A = {]a, b] : a ≤ b with a, b ∈ R} A = {[a, b[ : a ≤ b with a, b ∈ R}
A = {]−∞, b] : b ∈ R} A = {]−∞, b[ : b ∈ R}
A = {[a,∞[ : a ∈ R} A = {]a,∞[ : a ∈ R}
A = {]a, b[ : a ≤ b with a, b ∈ Q} A = {[a, b] : a ≤ b with a, b ∈ Q}
A = {]a, b] : a ≤ b with a, b ∈ Q} A = {[a, b[ : a ≤ b with a, b ∈ Q}
A = {]−∞, b] : b ∈ Q} A = {]−∞, b[ : b ∈ Q}
A = {[a,∞[ : a ∈ Q} A = {]a,∞[ : a ∈ Q}

♦
2A sequence (ωn) converges to ω, and denoted by ωn → ω if d(ωn,ω) → 0.
3Check this using the triangular inequality and the density of Qd in Rd.
4Such topologies generated by a countable base are called second countable topologies.
5A subseteq A ⊆ Ω is called dense if Cl(A) = Ω.
6If the topology with respect to which the Borel σ-algebra is defined is not clear, then we mention it.
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Exercice 1.15. Let (Ω,F) and (Ω�,F �) be two measurable spaces and X : Ω → Ω� a function. Show
that

• {X−1(B) : B ∈ F �} is a σ-algebra, which is denoted by σ(X).

• give a counter example that {X(A) : A ∈ F} is not a σ-algebra.

Hint: think about the properties of direct images and pre-images with respect to operations on sets. ♦

Definition 1.16. Let (Ω,F) and (Ω�,F �) be two measurable spaces. A measurable function7 is a function
X : Ω → S such that

X−1(B) = {ω : X(ω) ∈ B} ∈ F , for every B ∈ F �.

If Ω� = R and F � is the Borel σ-algebra, we call X a random variable.

Remark 1.17. In probability theory, we often abuse notations whenever it is clear what is the image space,
that is, we use the shorthand notations for random variables

{X ∈ B} := X−1(B), {X = x} := X−1({x}), {X ≤ x} := X−1(]−∞, x]), · · · �

Remark 1.18. If Ω is a state space without a predefined σ-algebra, and X : Ω → Ω� is a function with
value in a measurable space (Ω�,F �), then

σ (X) := σ
��

X−1(B) : B ∈ F ���

is the smallest σ-algebra for which X is a measurable function. In other words, in the framework of the
Definition 1.16 of measurable function, it holds σ(X) ⊆ F . More generally, let (Xi) be a family of func-
tions Xi : Ω → Ω�

i where (Ω�
i,F �

i) is a family of measurable spaces, then σ(Xi : i) = σ({X−1
i (B) : B ∈

F �
i , i}) is the smallest σ-algebra such that each Xi is measurable. �

Lemma 1.19. The composition of measurable functions is measurable.

Proof. Let (Ω,F), (Ω�,F �) and (Ω��,F ��) be three measurable spaces and X : Ω → Ω�, Y : Ω� → Ω��

be two measurable functions. Define Z = Y ◦X : Ω → Ω��, ω �→ Z(ω) = Y (X(ω)) the composition
of X and Y . For every A ∈ F ��, it holds Z−1(A) = X−1(Y −1(A)) = X−1(B) where B = Y −1(A).
Since Y is measurable, it follows that B = Y −1(A) ∈ F �. Further, the measurability of X implies that
Z−1(A) = X−1(B) ∈ F showing that Z is measurable. �

Proposition 1.20. Let (Ω,F) and (Ω�,F �) be two measurable spaces. If C� is a collection of subsets of
Ω� such that F � = σ(C�), then for X : Ω → Ω�, the following assertions are equivalent

(i) X is measurable;

(ii) {X ∈ B} ∈ F for every B ∈ C�.

Proof. Clearly, (i) implies (ii). Reciprocally, let D� := {A ∈ F � : X−1(A) ∈ F}. To show measurability
of X , we just have to show that F � = D�. By assumption, C� ⊆ D�, therefore, F � = σ(C�) ⊆ σ(D�) ⊆
F �. We are left to show that σ(D�) = D�. This is however immediate since X−1 commutes with
complements, arbitrary union and X−1(∅) = ∅. �

Combined with Exercise 1.14, it follows that for every function X : Ω → R to be a random variable, it
suffices to check that {X ≤ x} ∈ F for every x ∈ R.

7If necessary, we say F -F �-measurable if the context is not clear with respect to which we are measurable.
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Corollary 1.21. Let (Ω,F) be a measurable space and (Ω�,T�) be a topological space. A function
X : Ω → Ω� is measurable with respect to the Borel σ-algebra B(T�) of Ω� if and only if X−1(O�) ∈ F
for every open set O� ∈ T�.
If furthermore, T� is generated by a countable topological base B�, then X is measurable with respect to
the Borel σ-algebra B(T�) of Ω� if and only if X−1(O�) ∈ F for every open set O� ∈ B�.

Proof. As for the first part, it is a direct application of Proposition 1.20. As for the second part, it follows
from the fact that every open set O� is a countable union of elements in B�. �

The concept of measurability is the measurable pendant to continuity for functions between topological
spaces.

Definition 1.22. Let (Ω,T), (Ω�,T�) be two topological spaces. A function X : Ω → Ω� is called
continuous if X−1(O�) is open for every open set O� ⊆ Ω�.8

In the case where Ω� = R or Ω� = [−∞,∞], we say that a function is

• lower semi-continuous if {X ≤ t} is closed for every t ∈ R.

• upper semi-continuous if {X ≥ t} is closed for every t ∈ R.

Remark 1.23. If Ω is a metric space, the following are equivalent

• X is continuous, lower semi-continuous or upper semi-continuous, respectively

• limX(ωn) → X(ω), lim infX(ωn) ≥ X(ω), or lim supX(ωn) ≤ X(ω) for every ωn → ω,
respectively.

As for the first assertion, suppose that X is continuous and pick a converging sequence ωn → ω. By
continuity of X , X−1(]X(ω) − 1/m,X(ω) + 1/m[) is an open set containing ω for every integer m.
Hence, there exists δ > 0 such that Bδ(ω) ⊆ X−1(]X(ω)− 1/m,X(ω) + 1/m[). Since ωn → ω, there
exists n0 such that ωn ∈ Bδ(ω) for every n ≥ n0. All together, it implies that for every m ∈ N, there
exists n0 such that |X(ω) −X(ωn)| ≤ 1/m for every n ≥ n0. It shows that X(ωn) → X(ω) for every
ωn → ω. Reciprocally, let F ⊆ R be a closed set and (ωn) be a sequence in X−1(F ) converging to ω.
By assumption, it follows that the sequence (X(ωn)) of elements in F converges to X(ω). Since F is
closed, it follows that X(ω) ∈ F and therefore ω ∈ X−1(F ) showing that X−1(F ) is closed. Thus X is
continuous.
Let us show the characterization of lower semi-continuity. Suppose that X is lower semi-continuous
and let (ωn) be a sequence in Ω converging to ω. Let a = lim infX(ωn) = supn infk≥n X(ωk).
It follows that X−1(] − ∞, a]) ⊇ ∩n ∪k≥n {ωk}. Since X−1(] − ∞, a]) is closed, it follows that
X−1(] −∞, a]) ⊇ Cl(∩n ∪k≥n {ωk}). Since ωn → ω, it follows that ω ∈ Cl(∩n ∪k≥n {ωk : k ≥ n}),
and therefore X(ω) ≤ a = lim infX(ωn). Reciprocally, let F = X−1(] − ∞, a]) and let (ωn) be a
sequence in F converging to ω. It follows that X(ωn) ≤ a for every n and therefore lim infX(ωn) ≤ a.
Since X(ω) ≤ lim infX(ωn) ≤ a it follows that ω ∈ F showing that X−1(]−∞, a]) is closed. �

Remark 1.24. As for measurable functions, you can define topologies generated by family of functions,
analogue to Remark 1.18 as the smallest topology that makes functions continuous. Also, the composition
of continuous functions is continuous. �

Corollary 1.25. Let X : Ω → R be a function where Ω is a topological space endowed with the Borel
σ-algebra. Under the following assumptions, X is a random variable

• X is a continuous function;

8Or equivalently X−1(F �) is closed for every closed set F � ⊆ Ω�.
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• X is an upper semi-continuous function;9

• X is a lower semi-continuous function;10

Proof. As for the continuity, we make use of the fact that the Borel σ-algebra on the real line is generated
by the closed sets ]−∞, t] for t ∈ R. From the definition of continuity, {X ≤ t} is closed and therefore
measurable for every t ∈ R. It follows by Proposition 1.20 that X is measurable. The same argumentation
holds for lower semi-continuous functions. For the upper semi-continuous one, we use the intervals [t,∞[
for t ∈ R. �

Definition 1.26. Let (Ωi,Fi) be a non-empty family of measurable spaces. The product σ-algebra, de-
noted by ⊗Fi on the product state space Ω =

�
Ωi, is defined as the σ-algebra generated by the family

of projections

πi : Ω =
�

Ωi −→ Ωi

ω = (ωi) �−→ ωi

Exercice 1.27. Show that in 2 dimensions, it holds F1 ⊗ F2 = σ({A×B : A ∈ F1, B ∈ F2}). ♦

Under the notations of Definition 1.26, a product cylinder set is a set A ⊆ Ω of the form – assuming that
the index set is directed11 –

A =
�

i<i1

Ωi ×Ai1 ×
�

i1<i<i2

Ωi ×Ai2 . . .×
�

in−1<i<in

Ωi ×Ain ×
�

in<i

Ωi

where Aik ∈ Fik for k = 1, . . . , n.
As an exercise, show that the family of product cylinder generates the product σ-algebra.

Example 1.28. Consider now our example of coin tossing. Suppose that we are not only observing one
coin toss but infinitely – countably – many such as for instance every minutes. Setting −1 for a tail and 1
for a head, we can formalize our state space as follows:

Ω =
�

n∈N
{−1, 1} = {−1, 1}N = {ω = (ωn) : ωn = ±1 for every n}

This state space can also be seen as the set of binary sequences for instance in computer science. On each
Ωn = {−1, 1} we consider the σ-algebra Fn = {∅, {−1}, {1}, {−1, 1}}. We endow this state space of
the never ending realization of a coin toss with the product σ-algebra, that is, according to what has been
stated previously, generated by the product cylinders that in this special case take the form:

C = {ω binary sequences such that ωnk
= bk, k = 1, . . . n}

for a given set of values bk ∈ {−1, 1}, k = 1, . . . , n. ♦

We now focus mainly on random variables. The following propositions and theorems use a lot the struc-
ture of R, in particular its complete order that generates the topology.12 From now on, we are given a
measurable space (Ω,F) and denote by L0 = L0(Ω,F) the set of random variables on (Ω,F).

9That is {ω : X(ω) ≥ x} is closed for every x ∈ R.
10That is {ω : X(ω) ≤ x} is closed for every x ∈ R.
11Which is always possible from the general theory of boolean algebra, see appendix A.1 where more is said about product σ-

algebras.
12Think why for each of the following assertions, the structure of R is so important.
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Proposition 1.29. Let X,Y be random variables as well as (Xn) be a sequence of random variables. It
holds

• aX + bY is a random variable for every a, b ∈ R;

• XY is a random variable;

• max(X,Y ) and min(X,Y ) are random variables;

• supXn and infXn are extended real valued random variables;13

• lim infXn := infn supk≥n Xk and lim supXn := infn supk≥n Xk are extended real valued ran-
dom variables;

• A := {limXn exists} := {ω : limXn(ω) exists} = {lim infXn = lim supXn} is measurable.

Proof. First, let g : R × R → R be a continuous function. It follows that the function g(X,Y ) is
measurable for the following reason. First, the mapping T : Ω → R × R, ω �→ (X(ω), Y (ω)) is
measurable with respect to product Borel σ-algebra on R × R. Indeed, for every two Borel sets A,B
of the real line, it follows that T−1(A × B) = {X ∈ A} ∩ {Y ∈ B} which is an element in F by
measurability of X and Y . Now, since the product sets A × B for A,B Borel sets in R generates the
Borel product σ-algebra on R2, see Exercise 1.27, it follows that T is measurable. By continuity of g
together with Corollary 1.25, it follows that g is measurable and therefore g ◦ T is a random variable by
Lemma 1.19. Taking g(x, y) = ax+ b, g(x, y) = xy, g(x, y) = max(x, y) and g(x, y) = min(x, y), the
third tree points follows.
Let a ∈ R, it holds {supn Xn ≤ a} = {Xn ≤ a : for every n} = ∩n{Xn ≤ a} which is measurable
since {Xn ≤ a} is measurable. Since ]−∞, a] generates the Borel σ-algebra, it follows that supn Xn is
measurable. The same argumentation for infXn follows with {infXn ≥ a}.14 Let a ∈ R, it holds

{lim infXn ≤ a} = {sup
n

inf
k≥n

Xn ≤ a} = {Xk ≤ a : for some k ≥ n for all n} = ∩n ∪k≥n {Xk ≤ a}

and so the measurability of lim infXn follows by the same argumentation as above and the stability of the
σ-algebra under countable intersection and union. Finally A = {lim infXn = lim supXn} = {Z = 0}
for the random variable lim infXn − lim supXn and therefore is measurable. �

1.2. Probability Measures
Definition 1.30. A probability measure P on the measurable space (Ω,F) is a function P : F → [0,∞]
such that

• P [∅] = 0 and P [Ω] = 1;

• P [∪An] =
�

P [An] for every sequence of pairwise disjoint15 events (An) ⊆ F .

The triple (Ω,F , P ) is called a probability space.

In probability theory, a probability measure returns a quantification of the uncertainty that an event occurs.

Lemma 1.31. Let P be a measure on a measurable space (Ω,F). For every A,B ∈ F and sequence
(An) ⊆ F , it holds

13With respect to the Borel σ-algebra on [−∞.∞] generated by the metric d(x, y) = | arctan(x) − arctan(y)| that coincide
with the euclidean topology on R.

14Or the fact that infn Xn = − supXn and −x is a continuous function.
15That is An ∩Am = ∅ for every m �= n.
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• P [B] = P [A] + P [B \A] ≥ P [A] whenever A ⊆ B;

• P [Ac] = 1− P [A];

• P [A ∪B] + P [A ∩B] = P [A] + P [B];

• σ-subadditivity: P [∪An] ≤
�

P [An]

• lower semi-continuity: limn P [∪k≤nAk] = P [∪An]

• upper semi-continuity: limn P [∩k≤nAk] = P [∪An]

Proof. The last three properties follows from Lemma 1.36. Clearly, B is the disjoint union of A and
B \A. Using σ-additivity, the first assertion follows. The second one follows with B = Ω and P [Ω] = 1.
The third one follows from A∪B being the disjoint union of A and B \ (A∩B) and P [B \ (A∩B)] =
P [B]− P [A ∩B]. �

Note that a probability measure only take value in [0, 1] due the monotony property and P [Ω] = 1. If we
drop the assumption that P [Ω] = 1, then P is a measure – traditionally denoted with the Greek letters
µ, ν, . . .

• If given a measure µ we assume that µ(Ω) < ∞ then we say that µ is a finite measure. However
this is almost like a probability measure since if µ is non zero, defining P = µ/µ(Ω) gives a
probability measure.

• If given a measure µ we assume that there exists an increasing sequence of measurable sets A1 ⊆
A2 ⊆ . . . with limAn := ∪An such that µ(An) < ∞, then we say that µ is a σ-finite measure.
This is for instance the case of the Lebesgue measure λ on Rd.

• If for every A ∈ F with P [A] > 0, there exists B ⊆ A with 0 < P [B] < P [A], we say that P is
an atom free probability measure.

• A set16 N ⊆ Ω is called a zero-set, a set of null measure, a negligible set if there exists A ∈ F such
that P [A] = 0 and N ⊆ A.

• The σ-algebra FP = σ (F ,N ) where N denotes the collection of all negligible sets is called the
completion under P of F .17

• A probability measure Q on F is called absolutely continuous with respect to P , denoted by Q �
P , if P [A] = 0 implies Q[A] = 0 for every A ∈ F . We say that Q is equivalent to P if Q � P
and P � Q.

In probability theory, we often adopt the following short handwritings

P [X ∈ B] := P [X−1(B)], P [X = x] := P [X−1({x})] P [X ≤ x] := P [X−1(]−∞, x])] . . .

Example 1.32 (Examples of Probability Measures). Let (Ω,F) be a measurable space.

1) Probablity on countable sets. Suppose that Ω is a countable set – a fortiori finite. Then each proba-
bility measure P on F = P(Ω) = 2Ω is of the form

P [A] =
�

ω∈A

p(ω)

16Not necessarily measurable
17Be careful that the completed σ-algebra depends on P .
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for some function p : Ω → [0, 1] with
�

p(ω) = 1.18 An important example of which is when Ω =
{1, . . . , N} for some integer N and we take p(n) = 1/N for every n = 1, . . . , N . The resulting
probability measure is called the uniform probability distribution on Ω.

2) Dirac measure. The Dirac measure at ω0 ∈ Ω is defined as the set value function

δω0
(A) =

�
1 if ω0 ∈ A

0 otherwise
, A ∈ F .

Other names for the Dirac measure are, point measure at ω0.

3) Counting measure. Define

µ(A) =

�
#A if A is finite
∞ otherwise

, A ∈ F .

It is easy to check that µ is an additive measure which is σ-stable if and only if A is finite. It is a
probability measure if #Ω = 1.

4) Normal Distribution. For Ω = R and F the Borel σ-algebra of the real line, we define

P [A] =
1

σ
√
2π

�

A

e−
(x−µ)2

2σ2 λ(dx), A ∈ F ,

where λ is the Lebesgue measure on R. This is the famous normal distribution, and you certainly already
showed in your mathematical life that P [R] = 1 so that P is a probability measure. For instance in our
example of the temperature for tomorrow morning we can assume that at this time of the year in Shanghai,
these are normally distributed around 24 with a variance of 1. ♦

In Example 1.28, we introduced the state space of tossing infinitely a coin. Supposing that the coin is fair,
we know that tossing and getting head is 1/2. We could extend with combinatoric arguments what is the
probability of a finite sequence of coin tosses, for instance of having tail then head twice in three tosses.
The main question is whether it is possible to find a probability measure that is defined for any sequence
of coin tossing but coincide for any finite sequence to what we intuitively understand for finitely many
coin toss. The answer is in the so called Caratheordory measure extension that we won’t prove here, but
can be found in any measure text book.

Definition 1.33. A collection R of subsets of Ω is called a

• semi-ring if

(i) ∅ ∈ R
(ii) A ∩B ∈ R whenever A,B ∈ R;

(iii) if A,B ∈ R, there exists C1, . . . , Cn ∈ R pairwise disjoints such that A \B = ∪k≤nCk.

• ring if

(i) ∅ ∈ R
(ii) A ∪B ∈ R whenever A,B ∈ R;

(iii) A \B ∈ R whenever A,B ∈ R;

18Why?
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From the identity A ∩B = A \ (A \B), it follows that a ring is closed under intersections and therefore
a ring is a semi-ring. Inspection shows that the ring generated by a semi-ring R is exactly the collection
of sets A = ∪k≤nAk for every finite family (Ak)k≤n of pairwise disjoint elements in R.

Definition 1.34. Let R be a semi-ring. A function P : R → [0,∞] is called a content if

• P [∅] = 0;

• P [∪k≤nAk] =
�

k≤n P [Ak] for every finite family (Ak)k≤n of pairwise disjoint elements in R
such that ∪k≤nAk ∈ R.

If a content P satisfies

• P [∪nAn] =
�

P [An] for every sequence (An) of pairwise disjoint elements in R and such that
∪nAn ∈ R.

then P is called a premeasure.

Recall that unlike rings, semi-rings are in general not closed under union. If P is a content on a ring, then
it is finitely additive with respect to finite family of disjoints events. Furthermore, if P is a content on a
semi-ring R, it can easily be extended to a content on the ring generated by R. Indeed, as mention above,
the ring generated by the semi-ring R is the collection A = ∪k≤nAk for finite pairwise disjoints family
(An)n≤k of elements in R. So defining P [A] :=

�
k≤n P [Ak] provides the desired extension.

Remark 1.35. Note that a content on a ring is automatically

• monotone: indeed for A ⊆ B it holds P [B] = P [B \A∪A] = P [B \A]+P [A] ≥ P [A]. In particular
P [B \A] = P [B]− P [A].

• sub-additive: that is for (Ak)k≤n finite family of elements in R and A ⊆ ∪k≤nAk it holds P [A] ≤�
k≤n P [Ak]. Indeed, define B1 = A ∩ A1 and recursively Bk = A ∩ (Ak \ (∪l<kAl)) for k ≤ n. By

definition of a ring, it defines a finite disjoint family of elements in R and it holds Bk ⊆ Ak for every
k as well as A = ∪k≤nBk. Hence, by additivity and monotony from the previous point, it follows that
P [A] = P [∪k≤nBk] =

�
P [Bk] ≤

�
P [Ak]. �

A probability measure on a measurable space is in particular a content on a ring. The following central
lemma holds for probability measures, but it also holds for the broader class of finite content on a ring.
Since we will need it in the appendix for the proof of Caratheodory theorem, we state it in its generality
here.

Lemma 1.36. Let R be a ring and P : R → [0,∞] a finite content, that is P [A] < ∞ for every A ∈ R.
Then the following are equivalent

(i) σ-additivity: P [∪An] =
�

P [An] for every countable family (An) of pairwise disjoint elements
in R such that ∪An ∈ R;

(ii) Lower semi-continuity: supn P [An] = P [∪An] for every countable family (An) of increasing
elements R such that ∪An ∈ R;

(iii) Upper semi-continuity: infn P [An] = P [∩An] for every countable family (An) of decreasing
elements in R such that ∩An ∈ R;

(iv) Continuous at ∅: infn P [An] = 0 for every countable family (An) of decreasing elements in R
such that ∩An = ∅;
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(v) σ-sub-additivity: P [A] ≤ �
P [An] for every countable family (An) of elements in R, A ∈ R such

that A ⊆ ∪An.

Proof. Let us show that (i) implies (ii). Let (An) be an increasing sequence such that A = ∪An ∈ R.
Defining Bn = An \ ∪k<nAk = An \ Bn−1 for n > 1 and B1 = A1 provides a disjoint sequence of
elements in R. Indeed per induction starting with B1 = A1 ∈ R, suppose that Bn−1 ∈ R is follows by
the definition of a ring – recall a ring is closed under union, intersection, and difference – and An ∈ R
that Bn = An \Bn−1 ∈ R. Since An = ∪k≤nBk and A = ∪Bn, it follows from σ-additivity that

P [A] =
�

P [Bn] = sup
�

k≤n

P [Bk] = supP [∪k≤nBk] = supP [An]

To show that (ii) implies (i) is analogue. Let (An) ⊆ R be a pairwise disjoint sequence of sets such
that A = ∪An ∈ R. Defining Bn = ∪k≤nAk provides an increasing sequence of element in R and
∪Bn = A ∈ R. Hence

P [A] = supP [Bn] = sup
�

k≤n

P [Ak] =
�

P [Ak]

Let us show that (ii) implies (iii). Let (An) ⊆ R be a decreasing sequence such that A = ∩An ∈ R. It
follows that Bn = A1 \An defines an increasing sequence such that B = ∪Bn = A1 \∩An = A1 \A ∈
R. Lower semi-continuity and additivity implies19

P [A1]− inf P [An] = sup(P [A1]− P [An]) = supP [A1 \An]

= P [∪A1 \An] = P [A1 \A] = P [A1]− P [A]

Let us show that (iii) implies (ii). Let (An) ⊆ R be an increasing sequence such that A = ∪An ∈ R,
then Bn = A \ An defines a decreasing sequence in R such that ∩Bn = A \ ∪An ∈ R. The same
argumentation as above yields the assertion.
The fact that (iii) implies (iv) is immediate, so let us show that (iv) implies (iii). It is left as an exercise
by noting that a decreasing family (An) ⊆ R such that A = ∩nAn ∈ R defines a decreasing family
Bn = An \A of elements in R which intersection is the empty-set.
We show that (i) implies (v). Let (An) be a countable family of elements in R and A ∈ R such that
A ⊆ ∪An. Define B1 = A ∩ A1 and Bn = A ∩ (An \ ∪k<nAk) which by induction and the definition
of a ring is countable family of disjoint elements in R such that A = ∪Bn ∈ R and Bn ⊆ An for every
n. Further, since P is a premeasure it is in particular monotone, see Remark 1.35, hence

P [A] = P [∪Bn] =
�

P [Bn] ≤
�

P [An]

showing the σ-sub-additivity. Reciprocally, let P be a σ-subadditive content on R. It follows in particular
that it is monotone, see Remark 1.35. Let (An) be a countable family of pairwise disjoint events in R
such that A = ∪An ∈ R. It follows that

�
P [An] = sup

n

�

k≤n

P [Ak] = sup
n

P [∪k≤nAk] ≤ sup
n

P [A] = P [A].

The σ-sub-additivity yields the reverse equality, showing σ-additivity. �

Example 1.37. The collection of cylinders on Ω = {−1, 1}N is a semi-ring that generates the product
σ-algebra. The collection {[a, b[ : a < b, a, b ∈ R} that generates the Borel σ-algebra of the real line is a
semi-ring but not a ring! ♦
19Show that for a content on a ring, it holds P [A \B] = P [A] = P [B] whenever A,B ∈ R.

14



The definition of a semi-ring might be quite artificial but it is actually useful together with Caratheory’s
extension theorem. Indeed, when you practically want to define a measure “per hand”, it is often hard, if
not impossible, to define it on such a complex collection as a σ-algebra and ensure that it has the good
properties. Therefore, you often search for a simple collection of sets where the definition makes sense,
and the following theorem ensures that you can find a measure that corresponds to the one you defined
on the smallest subset.

Theorem 1.38 (Caratheordory Extension Theorem). Let Ω be a non empty-set, R a semi-ring such
that Ω = ∪An for some countable family (An) of elements in R. Suppose that P : R → [0,∞] is a
content such that

(i) P [A] < ∞ for every A;

(ii) P is σ-sub-additive, that is P [∪An] ≤
�

P [An] whenever (An) is a countable family of elements
in R such that ∪An ∈ R, and A ∈ R with A ⊆ ∪An.

Then P can be extended to a measure P on F = σ(R).

The proof of which is done in the appendix as well as the construction of several important measures,
among others such as the probability coinciding with the fair coin toss when the experience is conducted
infinitely many times. The main question though is if such an extension is unique. This follows however
from Dynkin Theorem 1.6.

Proposition 1.39. Let (Ω,F) be a measurable space and P a π-system on Ω that generates F . Suppose
that two measures P and Q on F coincide on P , then P = Q.

Proof. Let C be the collection of measurable sets on which P and Q coincide. By assumption P ⊆ C.
Further, it can be easily checked – do it!! – that C is a λ-system. Therefore, applying Theorem 1.6, it
follows that F = σ(P) ⊆ C ⊆ F showing that P = Q. �

1.3. Integration
Let (Ω,F , P ) be a probability space. A random variable X is said to be simple or a step function, if

X =
�

k≤n

αk1Ak

for a A1, . . . , An ∈ F and α1, . . . ,αn ∈ R. Note that this representation is not unique!20 We denote by
L0,step the collection of these step functions which is a linear subspace of L0 and define the expectation
of simple random variable X with respect to P as

Ê[X] :=
�

k≤n

αkP [Ak]

Exercice 1.40. Show that the definition of the expectation is a well defined operator on L0,step. 21 ♦

Proposition 1.41. On L0,step, the following properties hold

• Monotony: Ê[X] ≤ Ê[Y ] whenever X ≤ Y .

20Why?
21Why?
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• Linearity: Ê is a linear operator on L0,step;

Proof. Let X =
�

k≤n αk1Ak
and Y =

�
k≤m βk1Bk

be two simple random variables. Without loss of
generality by taking a finer partition that contains both families, we may assume that m = n, Ak = Bk

and (Ak) is a pairwise disjoint family. If X ≤ Y , it follows that αk = X(ω) ≤ Y (ω) = βk for
every ω ∈ Ak and k = 1, . . . , n. Hence, Ê[X] =

�
k≤n αkP [Ak] ≤

�
k≤n βkP [Ak] = E[Y ]. For

a, b ∈ R, it holds Ê[aX + bY ] =
�

k≤n(aαk + bβk)P [Ak] = a
�

k≤n αkP [Ak] + b
�

k≤n βkP [Ak] =

aÊ[X] + bÊ[Y ].

Definition 1.42. For X ∈ L0
+ := {X ∈ L0 : X ≥ 0} we define

E[X] := sup
�
Ê[Y ] : Y ≤ X,Y ∈ L0,step

+

�

A random variable X ∈ L0 is said to be integrable if E[X+] and E[X−] take both finite values. The
collection of integrable random variable is denoted by L1. The expectation of elements in L1 is defined
as

E[X] = E[X+]− E[X−]

By definition, E is an extension of Ê to the space L0
+ since for Y ∈ L0,step

+ it holds E[Y ] = Ê[Y ]. This
is the same on L1, as L0,step ⊆ L1 and it holds E[Y ] = Ê[Y ] for every Y ∈ L0,step. We therefore
remove the hat on the top of the expectation symbol everywhere. Finally, if X is a positive extended real
valued random variable the expectation as given by the definition above is also well defined.

Theorem 1.43. Let (Xn) be an increasing sequence of positive random variables then

supE[Xn] = limE[Xn] = E[supXn] = E[X]

where X = supXn is an extended real valued random variable.

Proof. By monotonicity, we clearly have E[Xn] ≤ E[X] for every n, therefore supE[Xn] ≤ E[X].
Reciprocally, suppose that E[X] < ∞ and pick ε > 0 and Y ∈ L0,step

+ such that Y ≤ X and E[X]−ε ≤
E[Y ].22 For 0 < c < 1 define the sets An = {Xn ≥ cY }. Since Xn is increasing to X , it follows that
An is an increasing sequence of events. Furthermore, since cY ≤ Y ≤ X and cY < X on {X > 0}, it
follows that ∪An = Ω. By non-negativity of Xn and monotonicity, it follows that

cE[1An
Y ] ≤ E[1An

Xn] ≤ E[Xn]

and so
c supE[1An

Y ] ≤ supE[Xn]

Since Y =
�

l≤k αl1Bl
for α1, . . . ,αk ∈ R+ and B1, . . . , Bk ∈ F , it follows that

E [1An
Y ] =

�

l≤k

αlP [An ∩Bl].

However, since P is a probability measure, and An is increasing to Ω, it follows from the lower semi-
continuity of probability measures, see Lemma 1.31, that P [An ∩ Bl] � P [Ω ∩ Bl] = P [Bl], and
so

supE[1An
Y ] =

�

l≤k

αl supP [An ∩Bl] =
�

αlP [Bl] = E[Y ].

Consequently
E[X] ≥ limE[Xn] = supE[Xn] ≥ cE[Y ] = cE[X]− cε

which by letting c converging to 1 and ε to 0 yields the result. �
22Why is it possible?
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Proposition 1.44. For each X ∈ L0
+, there exists an increasing sequence (Xn) ⊆ L0,step

+ such that
Xn(ω) � X(ω) and uniformly on each set {X ≤ M} where M ∈ R.

Proof. Let An
k = {(k − 1)/2n ≤ X < k/2n} for k = 1, . . . , n2n and every n. Define

Xn :=

n2n�

k=1

k − 1

2n
1An

k
+ n1{X>n}.

From the definition follows that Xn ≤ X for every n and X(ω)−2−n ≤ Xn(ω) for every ω ∈ {X ≤ n}
which, up to the monotonicity left as an exercise, ends the proof. �

Proposition 1.45. The expectation operator is a monotone on L0
+ and E[aX + bY ] = aE[X] + bE[Y ]

for every a, b ∈ R with a, b ≥ 0. Further, the space L1 is a linear space and the expectation operator E
is a monotone on it.

Proof. Let X,Y ∈ L0
+, real numbers a, b ≥ 0 and, according to proposition 1.44, denote by Xn, Yn two

increasing sequence of simple random variable such that Xn � X and Y n � Y . If X ≤ Y it follows
from the construction in 1.44 that Xn ≤ Yn. From the monotonicity of E on L0,step and the monotone
convergence theorem that E[X] = limE[Xn] ≤ limE[Yn] = E[Y ]. The same argumentation using the
linearity of E on L0,step, it follows that E[aX + bY ] = limE[aXn + bYn] = lim aE[Xn] + bE[Yn] =
a limE[Xn] + b limE[Yn] = aE[X] + bE[Y ]. The case of L1 follows the same lines. �

We finish this section with two of the most important assertions of integration theory.

Theorem 1.46. Let (Xn) be a sequence in L0.

Fatou’s lemma: Suppose that Xn ≥ Y for some Y ∈ L1. Then it holds

E [lim infXn] ≤ lim inf E [Xn] .

Dominated convergence theorem: Suppose that |Xn| ≤ Y and Xn → X , then it holds

E [X] = limE [Xn]

Proof. Up to the variable change Xn−Y , we can assume that Xn is positive. Let Yn = infk≥n Xn which
is an increasing sequence of positive random variable that converges to lim infXn = supn infk≥n Xk.
Notice also that Yn ≤ Xk for every k ≥ n and therefore by monotonicity of the expectation E[Yn] ≤
infk≥n E[Xk]. We conclude Fatou’s lemma with the monotone convergence theorem as follows

E [lim infXn] = limE [Yn] = supE [Yn] ≤ sup
n

inf
k≥n

E[Xk] = lim inf E[Xn]

A simple sign change shows that Fatou’s lemma holds in the other direction, that is, if Xn ≤ Y for some
Y ∈ L1, then it holds

lim supE [Xn] ≤ E [lim supXn]

Now the dominated convergence theorem assumptions yields that −Y ≤ Xn ≤ Y for some Y ∈ L1.
Hence, since X = limXn = lim infXn = lim supXn, it follows that

lim supE [Xn] ≤ E [lim supXn] = E [X] = E [lim infXn] ≤ lim inf E [Xn]

However, lim inf E [Xn] ≤ lim supE[Xn] showing that E[Xn] converges and

E[X] = lim inf E[Xn] = lim supE[Xn] = limE[Xn].

which ends the proof. �
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One important property of the Lebesgue integral is that it is independant of the null sets on which func-
tions may differ.

Proposition 1.47. Let X,Y ∈ L1
+. Suppose that X ≥ Y P -almost surely, that is P [X ≥ Y ] = 1, then

it follows that E[X] ≥ E[Y ].

In particular, if X = Y P -almost surely, then it holds E[X] = E[Y ]. Also, if X ≥ 0 P -almost surely
and E[X] = 0, then it follows that X = 0 P -almost surely.

Proof. Suppose that X ≥ Y P -almost surely and defines A = {X < Y } which is a negligeable set. It
follows that (X − Y )1Ac ∈ L0

+, and so E[(X − Y )1Ac ] = E[X1Ac ]− E[Y 1Ac ] ≥ 0 by monotonicity.
On the other hand, (Y −X)1A ∈ L0

+, and let Zn =
�

αk1Bn
k

be an increasing sequence of step random
variables that converges to (Y − X)1A. Since (Y − X)1A = 0 on Ac, it follows that Bn

k =⊆ A for
every k, n and therefore P [Bn

k ] ≤ P [A] = 0 for every k, n. We deduce that E[Zn] = 0 for every n and
by Lebesgue monotone convergence, it follows that E[(Y − X)1A] = 0. We conclude by noticing that
(X − Y ) = (X − Y )1Ac − (Y −X)1A. �

This proposition allows in the monotone convergence theorem, Fatou’s lemma as well as dominated
convergence to replace convergence of random variable and inequalities by P -almost sure convergence
and P -almost sure inequalities. On L1 we can define the operator X �→ �X�1 = E[|X|]. Verify that

• X = 0 implies �X�1 = 0;

• �X + Y �1 ≤ �X�1 + �Y �1;

• �λX�1 = |λ| �X�1
In other words, �·� is “almost” a norm if in the first point we had equivalence and not only implication.
However, as the previous proposition shows, it actually holds

• �X�1 = 0 if and only if X = 0 P -almost surely.

We therefore proceed as in Algebra. Inspection shows that X ∼ Y on L0 if, and only if, X = Y P -
almost surely is an equivalence relation.23 We can therefore define the quotient of equivalence classes
L0 = L0/ ∼. We can work there just as in L0 in the P -almost sure sense, that is X = Y means
X = Y P -almost surely, even if X is actually just a representant of its equivalence class. Inequality
is also compatible with the equivalence relation and therefore X ≥ Y means X ≥ Y P -almost surely.
Every operation that is blind with respect to null measure sets can be carry over to L0. This is the case of
the expectation on L0

+. Similarly, we can define L1 as the set of equivalence classes of integrable random
variable that coincide P -almost surely. Also, since the operator �·�1 does not take into account objects
defined on negligeable sets, it carries over to L1 is there a true norm, making (L1, �·�) a normed space.
We can further define for 1 ≤ p ≤ ∞ the following operators on L0,

�X�p =

�
E [|X|p]1/p if p < ∞
inf {m : P [|X| ≤ m] = 1} if p = ∞

that give rise to the spaces

Lp :=
�
X ∈ L0 : �X�p < ∞

�

23An equivalence relation ∼ is a binary relation which is symmetric, that is x ∼ y if and only if y ∼ x, reflexive, that is x ∼ x
and transitive, that is x ∼ y and y ∼ z implies x ∼ z.
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Theorem 1.48 (Jensen’s inequality). Let ϕ : R → R be a convex function and X be an integrable
random variable. It holds

ϕ (E [X]) ≤ E [ϕ(X)] .

Proof. Let x0 = E[X]. Since ϕ is a convex real valued function, the existence of sub-derivative for
convex functions implies the existence of a, b ∈ R such that

ϕ(x) ≥ ax+ b, for all x ∈ R and ϕ(x0) = ax0 + b

Hence
E [ϕ(X)] ≥ aE[X] + b = ax0 + b = ϕ (E[X])

which ends the proof. �
Exercice 1.49. Using Jensen’s inequality, prove that (

�
ai)

1/n ≤ 1/n
�

ai where a1, . . . , an > 0. ♦
Theorem 1.50 (Hölder and Minkowsky Inequalities). Let p, q ∈ [1,∞] be such that 1/p + 1/q = 1.
For every X ∈ Lp and Y ∈ Lq , the Hölder inequality reads as follows:

�XY �1 = E [|XY |] ≤ E [|X|p]1/p E [|Y |q]1/q = �X�p �Y �q .
For every X,Y ∈ Lp, the Minkowsky reads as follows:

�X + Y �p = E [|X + Y |p]1/p ≤ E [|X|p]1/p + E [|Y |p]1/q = �X�p + �Y �p .
Proof. As for the Hölder inequality, the case where p = 1 and q = ∞, the inequality follows from
|XY | ≤ |X| �Y �∞. Suppose therefore that p, q are conjugate with values in ]1,∞[. Without loss of
generality, we may assume that X and Y are positives. It holds

E[XY ] = E[Y q]

�
XY 1−q Y

qdP

E[Y q]
= E[Y q]EQ

�
XY 1−q

�

where EQ is the expectation operator under the measure Q with density dQ := Y qdP/E[Y q].24 Defining
the convex function x �→ ϕ(x) = xp, Jensen’s inequality together with the fact that p(1− q)+ q = 0 and
1− 1/p = 1/q yields

E[XY ] = E[Y q]EQ[XY 1−q] = E[Y q]ϕ(EQ[XY 1−q])1/p ≤ E[Y q]EQ

�
ϕ(XY 1−q)

�1/p

= E[Y q]EQ

�
XpY p(1−q)

�1/p
= E[Y q]E

�
XpY p(1−q)Y q/E[Y q]

�1/p

= E[Xp]1/pE[Y q]1−1/p = E[Xp]1/pE[Y q]1/q

As for the Minkowski inequality, in the case where p = 1, it follows from |x+ y| ≤ |x| + |y|. The case
where p = ∞ is also easy. Suppose therefore that 1 < p < ∞. First notice that by convexity it holds
|x+ y|p ≤ 1/2 |2x|p + 1/2 |2y|p = 2p−1 (|x|p + |y|p). For information, this inequality ensures that Lp

is a vector space. Now using the triangular inequality and Hölder’s inequality for q = p/(p − 1) in the
end we get

�X + Y �pp = E [|X + Y |p]

≤ E
�
|X| |X + Y |p−1

�
+ E

�
|Y | |X + Y |p−1

�

≤
�
E [|X|p]1/p + E [|Y |p]1/p

�
E
�
|X + Y |(p−1)p/(p−1)

�(p−1)/p

=
�
�X�p + �Y �p

�
E [|X + Y |p]1−1/p

=
�
�X�p + �Y �p

�
�X + Y �p−1

p

if �X + Y �p = 0 the inequality is trivial, otherwise divide both sides by �X + Y �p−1 �
24Verify that Q defined as such is indeed a probability measure, that is Q(A) =

�
A dQ =

�
A Y q/E[Y q ]dP = E[1AY q/E[Y q ]]

is a σ additive measure and it holds EQ[Z] = E[ZY q/E[Y q ]].

19



It follows in particular that Lp is a vector space and that ��p is a norm on Lp. We say that Xn → X in
Lp for (Xn), X in Lp if �Xn −X�p → 0.

Proposition 1.51. Let (Xn) be a Cauchy sequence in (Lp, �·�p) for 1 ≤ p ≤ ∞. It follows that Xn → X
in Lp for some X ∈ Lp.

This proposition states that (Lp, �·�p) is a Banach space.

Proof. We do the proof for p < ∞. Let (Xn) be a Cauchy sequence. By Cauchy property, we can take a
subsequence (Yn) of (Xn) such that |Yn+1 − Yn| ≤ 2−n and define Zn = |Y1|+

�
k≤n−1 |Yk+1 − Yk|

which is an increasing sequence of positive random variables converging to Z = supZn. Hence, the
monoton convergence theorem shows that E[Zp] = limE[Zp

n]. By Minkowsky inequality it holds

E [Zp
n] = �Zn�pp ≤


�Y1�p +

�

k≤n−1

�Yk+1 − Yk�p




p

≤
�
�Y1�p + 1

�p

The left hand-side being independent of n, it follows by passing to the limit that Z ∈ Lp and therefore
Z < ∞ P -almost surely. On the other hand, since the absolute serie,

� |Zk+1 − Zk| converges, it
follows that Yn = Y −1+

�
k≤n−1 Yk+1−Yk converges P -almost surely to some Y . Hence, Y = limYn

is in Lp since |Y | = lim |Yn| ≤ Z ∈ Lp. We make use of dominated convergence on (Yn) since
Y p
n → Y p P -almost surely and |Yn|p ≤ Zp ∈ Lp, which implies that E[|Yn − Y |p] → 0. It shows that a

subsequence (Yn) of (Xn) converges in Lp to some Y . As an exercise, using the Cauchy property, show
that Xn → Y in Lp. �

Definition 1.52. Let (Xn) be a sequence of random variables and X a random variable. We say that

• Xn → X P -almost surely if P [lim supXn = lim infXn] = 1;

• Xn → X in probability if limP [|Xn −X| > ε] = 0 for every ε > 0;

• Xn → X in Lp if �Xn −X�p → 0.

Proposition 1.53. Let (Xn) be a sequence of random variables and X a random variable. The following
assertions hold:

(i) Xn → X P -almost surely implies Xn → X in probability;

(ii) Xn → X in probability implies that Yn → X P -almost surely for some subsequence (Yn) of
(Xn);

(iii) Xn → X in Lp implies that Yn → X P -almost surely for some subsequence (Yn) of (Xn).

(iv) Xn → X in probability and |Xn| ≤ Y for some Y ∈ L1 implies Xn → X in L1;

Proof. Homework sheet. �

Proposition 1.54 (Chebyshev/Markov inequality). Let X be a random variable, ε > 0. For every
0 < p < ∞, the Chebyshev inqueality reads

P [|X| ≥ ε] ≤ 1

εp
E [|X|p] .

In the case where p = 1, the inequality is due to Markov.
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Proof. Define At = {|X| ≥ t} and g(x) = xp which is an increasing function, so that consequently
yields 0 ≤ g(ε)1Aε

≤ g(|X|)1Aε
. Thus, 0 ≤ g(ε)P [Aε] = E[g(ε)1Aε

] ≤ E[g(|X|)1Aε
] ≤ E[g(|X|)]

which ends the proof.25 �

Remark 1.55. Note the proof of Markov’s inequality shows that the following inequality holds

P [|X| ≥ ε] ≤ 1

g(ε)
E [g (|X|)]

for every increasing and measurable function g : R → R such that g(ε) > 0. �

1.4. Radon-Nikodym, Conditional Expectation
In this section we will make use of a central theorem of Functional analysis applied in the special case
of Hilbert spaces.26 Recall that a linear functional T : H → R where (H, �·, ·�) is a Hilbert space is
continuous if and only if

sup
�x�=�x,x�≤1

|T (x)| < ∞

Theorem 1.56 (Riesz Representation Theorem). Let H be an Hilbert space, and T : H → R be a
continuous linear functional. Then there exists y ∈ H such that T (x) = �y, x� for every x ∈ H .

This theorem allows us to treat the following central theorem of measure theory in a rather simple way.

Theorem 1.57 (Radon-Nikodym Theorem). Let (Ω,F) be measurable space and P,Q two finite mea-
sures on F such that Q � P . Then there exists a P -almost surely unique and positive random variable
Z ∈ L1(P ) such that

Q (A) =

�

A

ZdP, for every A ∈ F

The random variable Z is called the Radon-Nikodym derivative of Q with respect to P and denoted by
dQ/dP . In particular it holds

�
XdQ =

�
XdQ/dPdP for every X ∈ L1(Q).

Proof. The proof is based on the argumentation of John von Neumann. Define Q̃ = P + Q, that is,
the measure Q̃[A] = P [A] + Q[A] for A ∈ F .27 Since Q � P , it follows that Q̃ is equivalent to P .
Indeed, P [A] = 0 for some A ∈ F implies that Q[A] = 0 and therefore Q̃[A] = P [A] +Q[A] showing
that Q̃ � P . Reciprocally, if Q̃[A] = 0, it follows from the positivity of Q and P that P [A] = 0
and therefore P � Q̃. Furthermore, it holds L2(Q̃) ⊆ L2(P ) ⊆ L1(P ). Indeed, denote by L0(P )
and L0(Q̃) the set of random variables identified when they agree Q̃-almost surely and P -almost surely,
respectively. Since Q̃ is equivalent to P , it holds that X = Y P -almost surely if, and only if, X = Y
Q̃-almost surely. Hence L0(P ) = L0(Q̃) and from now on we denote it L0 without referring to the
measure Q̃ or P .28 Thus, for X ∈ L0 such that X ∈ L2(Q̃), that is

�
X2d(P + Q) ≤ ∞, it holds�

X2dP ≤
�
X2dP +

�
X2dQ =

�
X2d(P +Q) < ∞ showing that X ∈ L2(P ) ⊆ L1(P ).29

25Note that the theorem holds by replacing the function g(x) = xp by any increasing function on R+.
26A (real) Hilbert space is a vector space with a bilinear form �·, ·� : H ×H → R, that is linear in the first as well as in the second

argument, such that �x, y� = �y, x� and �x, x� ≥ 0 with equality if and only if x = 0. Hence, �x� = |�x, y�|1/2 defines a
norm on H due to Cauchy-Schwartz inequality that states that |�x, y�| ≤ �x� �y�. The finite dimensional vector space Rd is an

Hilbert space for the distance scalar product �x, y� = �
k≤d xkyk and defines the euclidean norm �x� =

��
k≤d x2

k . More

importantly in our case, given a finite measure P , the space L2 with the bilinear form �X,Y � =
�
XY dP is, due to Hölder

inequality
�
|XY | dP ≤ (

�
|X|2 dP )1/2(

�
|Y |2 dP )1/2, a Hilbert space with resulting norm �X�L2(P ) =

�
X2dP )1/2

which is the L2 norm as defined before.
27Verify that this is indeed a measure.
28For this argument, it is central to have that Q � P , otherwise you would not have L0(P ) = L0(Q̃).
29To differentiate the �·�2 in the two spaces L2(Q̃) and L2(P ) we write �X�L2(Q̃) = (

�
X2dQ̃)1/2 and �X�L2(P ) =

(
�
X2dP )1/2.
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Define now the linear functional T : L2(Q̃) → R, X �→ T (X)
�
XdP which is well-defined since

L2(Q̃) ⊆ L2(P ). Using Jensen’s inequality and the fact that Q̃/Q̃(Ω) is a probability measure, it holds

����
�

XdP

���� ≤
�

|X| dP ≤
�

|X| d(P +Q) = Q̃(Ω)

�
|X| dQ̃

Q̃(Ω)

≤ Q̃(Ω)

��
X2 dQ̃

Q̃(Ω)

�1/2

=

�
Q̃(Ω)

�
X2dQ̃ =

�
Q̃(Ω) �X�L2(Q̃) .

It follows that
sup

X∈L2(Q̃),�X�L2)Q̃≤1

|T (X)| ≤
�
Q̃(Ω) < ∞,

showing that T is a continuous linear functional on the Hilbert space L2(Q̃). Applying Riesz representa-
tion Theorem 1.56, there exists Y ∈ L2(Q̃) such that

T (X) = �X,Y � =
�

XY dQ̃, for every X ∈ L2(Q̃).

In particular, on the one hand, if we take X = 1A where A = {Y ≤ 0}, it follows that 0 ≥
�
1AY dQ̃ =

T (1A) =
�
1AdP = P [A], showing that Y > 0 P -almost surely. On the other hand if, we take

A = {Y > 1} it follows that if Q̃(A) > 0 then it holds P [A] = T (1A) =
�
1AY dQ̃ >

�
1AdQ̃ =

P [A] +Q[A] which is a contradiction showing that Y ≤ 1 Q̃-almost surely. Since Q̃ is equivalent to P ,
it holds 0 < Y ≤ 1 Q̃- and P -almost surely.
It follows that 1/Y is a well-defined and positive random variable in L0. Since Yn = (1/Y ) ∧ n defines
an increasing sequence of bounded positive random variable such that supn Yn = 1/Y , applying twice
the monotone convergence theorem, we deduce that

�

A

dP

Y
= sup

n

�

A

YndP = sup
n

T (1AYn) = sup
n

�

A

YnY dQ̃ =

�

A

Y

Y
dQ̃ = Q̃(A),

for every A ∈ F . Taking A = Ω, it follows in particular from Q̃(Ω) < ∞ that 1/Y ∈ L1(P ). Defining
Z = 1/Y − 1 which is a positive measurable function in L1(P ), it follows that

Q (A) = Q̃(A)−Q(A) =

�

A

dP

Y
− P (A) =

�

A

ZdP

for every A ∈ F which ends the proof of the existence. Uniqueness is left as an exercise. �

The Radon-Nikodym Theorem allows us to prove easily the existence of conditional expectations.

Theorem 1.58. Let (Ω,F , P ) be a probability space and G ⊆ F be a sub-σ-algebra. For every inte-
grable random variable X , there exists a P -almost surely unique G-measurable and integrable random
variable Y such that

E [1AX] = E [1AY ] , for every A ∈ G
Denoting E[X|G] := Y , provided all the following random variables are all in L1, it holds:

(i) E[|E[X|G]|] ≤ E[|X|];

(ii) X �→ E[X|G] is linear;

(iii) E[X|G] ≥ 0 P -almost surely whenever 0 ≤ X P -almost surely;
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(iv) E[Xn|G] � E[X|G] whenever 0 ≤ Xn � X;

(v) E[Y X|G] = Y E[X|G] whenever Y is G-measurable;

(vi) E[XE[Y |G]] = E[E[X|G]Y ] = E[E[X|G]E[Y |G]];

(vii) E[E[X|G2]|G1] = E[X|G1] whenever the σ-algebras are such that G1 ⊆ G2 ⊆ F .

This unique random variable is called the G-conditional expectation of X , and is denoted by E[X|G].

Proof. For X in L1, it defines two finite measures on G given by

Q±(A) = E
�
1AX

±� , A ∈ G

which are by definition both absolutely continuous with respect to P .30 It follows from Radon-Nikodym
Theorem 1.57 that there exists two P -almost surely unique positive G-measurable random variables Z± ∈
L1(G) such that

Q±(A) = E[1AZ
±]

Defining E [X|G] = Z+−Z− ∈ L1(G) as the conditional expectation end the proof of the existence and
uniqueness. The properties (i)–(vii) are left as an exercise, where the monotone or dominated convergence
of Lebesgue as to be used for some. �

Exercice 1.59. Under the assumptions of the Theorem 1.48, show that for a sub-σ-algebra G ⊆ F , if
ϕ(X) is integrable, then it holds

ϕ (E [X|G]) ≤ E [ϕ (X) |G] ♦

For your interest, here is the proof of the existence of conditional expectation using Hilbert projections.

Proof. Suppose first that X ∈ L2(F). Note that L2(F) is an Hilbert space for the norm �·�2 and L2(G)
is a closed linear subspace of L2(F). Hence, by Hilbert’s projection theorem, there exists a unique
Y ∈ L2(G) such that X − Y is orthogonal to L2(G). Since 1A ∈ L2(G) for every A ∈ G it follows that

E [(X − Y )1A] = �X − Y, 1A� = 0, A ∈ G

showing the main assertion. The properties (ii)–(vii) are easy to verify in L2 from the definition and
therefore left as an exercise.
We show property (i). For X ∈ L2, let A = {E[X|F ] ≥ 0} which is an event in G, it follows that

E [|E [X|F ]|] = E [E [X|F ] ;A]− E [E [X|F ] ;Ac] = E [X;A]− E [X;Ac] ≤ E [|X|]

Hence
sup

�
E [|E [X|G]|] : X ∈ L2, �X�1 = E [|X|] ≤ 1

�
≤ 1 �

showing that the linear functional E[·|F ] on L2 is L1-continuous. Since L2 is dense in L1 which is com-
plete, it follows that this linear extension extends uniquely to a continuous one on L1, and the properties
(i)–(vii) extends as well to L1 which ends the proof.

30Verify that these are indeed measures!
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1.5. Independence
Definition 1.60. Let (Ω,F , P ) be a probability space and a family (Ci) of collections of elements in
F . The family is called independent if for every finite collection (Aik)k≤n with Aik ∈ Cik for every
k = 1, . . . , n, it holds

P [Ai1 ∩ · · · ∩Ain ] =
�

k≤n

P [Aik ]

Elements of a family (Ai) in F are called independent if the family ({Ai}) is independent. Random
variables (Xi) are called independent if (σ(Xi)) are independent.

Remark 1.61. A family (Ci) is called pairwise independent if P [Ai1 ∩ Ai2 ] = P [Ai1 ]P [Ai2 ] for every
Ai1 ∈ Ci1 , Ai2 ∈ Ci2 which is a weaker version of independence. As an exercise, find three sets A,B
and C on some probability space which are pairwise independent but not independent. �

Proposition 1.62. The following assertions holds

(i) Let P1, . . . ,Pn be a finite family of independent π-system. Then σ(P1), . . . ,σ(Pn) are also inde-
pendent.

(ii) Let X,Y be two independent positive random variables, or such that X,Y,XY ∈ L1, then it
follows that

E[XY ] = E[X]E[Y ]

(iii) Let X be a random variable independent of a sigma-algebra G. Then it holds

E [X|G] = E [X] .

Proof. (i) We show the case n = 2, the general one is done per induction. Let C1, C2 be the collection of
elements A1, A2 in σ(P1),σ(P2) respectively for which holds

P [A1 ∩A2] = P [A1]P [A2].

Let us show that C1 is a λ-system. Clearly Ω ∈ C1. Let A1, A2 be in C1, C2 respectively. It follows that

P [Ac
1 ∩Ac

2] = P [A2]− P [A1 ∩A2] = P [A2]− P [A1]P [A2] = (1− P [A1])P [A2] = P [Ac
1]P [A2]

showing that Ac
1 ∈ C1. Finally, let (An

1 ) be a sequence of pairwise disjoint elements in C1 and A2 in C2.
By σ-additivity of probability measures, it holds

P [(∪An
1 ) ∩A2] =

�
P [An

1 ∩A2] =
�

P [An
1 ]P [A2] =

��
P [An

1 ]
�
P [A2] = P [∪An

1 ]P [A2]

showing that ∪An
1 ∈ C1. We deduce that C1 is a λ-system containing the π-system P1. Since σ(P1) ⊆

σ(C1) = C1 ⊆ σ(P1), it follows that C1 = σ(P1). The same holds for C2 = σ(P2) showing that σ(P1)
is independent of σ(P2).

(ii) By assumption, it holds σ(X) is independent of σ(Y ). Assume that X and Y are positive. Let
X̃ =

�
k≤n αk1Ak

and Ỹ =
�

l≤m βl1Bl
for αk,βl positives and Ak ∈ σ(X) and Bl ∈ σ(Y ). It

follows that

E
�
X̃Ỹ

�
=

�

k≤n,l≤m

αkβlP [Ak ∩Bl] =
�

k≤n,l≤m

αkβlP [Ak]P [Bl]

=


�

k≤n

αkP [Ak]





�

l≤m

βlP [Bl]


 = E[X̃]E[Ỹ ]
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Since there exists sequences X̃n, Ỹn of the form X̃ and Ỹ above such that X̃n � X and Ỹn � Y , see
Proposition 1.44, it follows from Lebesgue’s monotone convergence that

E [XY ] = limE
�
X̃nỸn

�
= limE

�
X̃n

�
E
�
Ỹn

�
= E[X]E[Y ]

The case where X,Y,XY are in L1 can be easily derived from the positive random variable case by
separating positive and negative parts.

(iii) Let now X be an integrable random variable which is independent of the σ-algebra G. For every
A ∈ G, it follows that 1A and X are independent and therefore, from the previous point, it holds

E [X1A] = E [X]E [1A]

but on the other hand
E [E [X] 1A] = E [X]E [1A] .

Since E[X] is a constant and a-fortiori G-measurable, it follows from the uniqueness of the conditional
expectation that E[X|G] = E[X]. �

1.6. Fubini-Tonelli
The theorem of Fubini-Tonelli is concerned about the definition of sound product measures on finite
product spaces and their properties. To do so, we will make use of Caratheordory’s Theorem 1.38. In the
following we therefore consider the two dimensional case. Let (Ω1,F1) and (Ω2,F2) be two measurable
sets and define Ω = Ω1 × Ω2 endowed with the product σ-algebra F = F1 ⊗ F2.

Proposition 1.63. Let A ∈ F and X : Ω → R be a measurable function. Define

Aω1 := {ω2 ∈ Ω2 : (ω1,ω2) ∈ Ω} ⊆ Ω2 Aω2 := {ω1 ∈ Ω1 : (ω1,ω2) ∈ A} ⊆ Ω1

Xω1 := X(ω1, ·) : Ω2 → R Xω2 := X(·,ω2) : Ω1 → R

Then it holds that Aω1
∈ F2, Aω2

∈ F1, Xω1
is F2-measurable and Xω2

is F1 measurable.

Proof. Let C be the collection of those A ∈ F such that Aω2 × Aω1 ∈ F1 × F2. It clearly holds that
F1 × F2 ⊆ C. Direct inspection shows that C is a σ-algebra, and therefore F = σ(F1 × F2) ⊆ C ⊆ F
showing the first assertion. As for the second point, let B be a Borel set in R. It follows that {Xω1

∈
B} = {X ∈ B}ω1

which is an element of F2 by what has been just shown. Hence Xω1
is F2-measurable.

The same argumentation holds for Xω2 . �

Definition 1.64. A stochastic kernel on Ω1 ×F2 is a function K : Ω1 ×F2 → [0, 1] such that

(i) ω1 �→ K(ω1, A2) is F1-measurable for every A2 ∈ F2;

(ii) A2 �→ K(ω1, A2) is a probability measure on F2 for every ω1 ∈ Ω1.

A stochastic kernel is in some sense a measurable family of probability measures on F1, one for each
ω1 ∈ Ω1. A special case of a stochastic kernel is the constant one K(ω1, ·) = P2 for all ω1 ∈ Ω1 where
P2 is a probability measure on F2. Given a probability measure P1 on F1, we want to define a probability
measure P on the product σ-algebra F such that

P [A] =

�

Ω1

��

Ω2

1A(ω1,ω2)K(ω1, dω2)

�
P1(dω1).

This is the subject of the following Theorem
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Theorem 1.65 (Stochastic variant of Tonelli’s Theorem). Let P1 be a measure on F1 and K a stochas-
tic kernel on Ω1×F2. Then there exists a unique probability measure P on F such that for every positive
random variable X : Ω → R it holds

EP [X] =

�

Ω1

��

Ω2

X(ω1,ω2)K(ω1, dω2)

�
P1(dω1) (1.1)

In particular31

P [A] =

�

Ω1

K(ω1, Aω1)P1(dω1), A ∈ F . (1.2)

Proof. Define R = F1 ×F2 and P : R → [0, 1] given by

P [A] =

�

A1

K(ω1, A2)P1(dω1), A = A1 ×A2 ∈ R.

Inspection shows that R is a semi-ring that contains Ω.32 In order to make use of Caratheodory’s
Theorem 1.38, we just have to show that P is a σ-additive content. It holds P [∅] = 0 and P [Ω] =�
Ω1

K(ω1,Ω2)P1[dω1] =
�
Ω1

P1[dω1] = 1. Let us show directly the σ-additivity. Let (An
1 × An

2 ) be a
sequence of pairwise disjoint elements of R such that ∪An

1 × An
2 = A1 × A2 for some A1 ∈ F1 and

A2 ∈ F2. Define the functions

Xn(ω1) := 1An
1
(ω1)K(ω1, A

n
2 ) =

�

Ω2

1An
1 ×An

2
(ω1,ω2)K(ω1, dω2)

X(ω1) := 1A1
(ω1)K(ω1, A2) =

�

Ω2

1A1×A2
(ω1,ω2)K(ω1, dω2)

Since K is a stochastic kernel, it follows that each Xn as well as X are F1-measurable positive random
variables. Furthermore, due to the pairwise disjointness of (An

1 ×An
2 ), as well as monotone convergence,

it follows that
�

Xn(ω1) =

�

Ω1

�
1An

1 ×An
2
(ω1,ω2)K(ω1, dω2) =

�

Ω2

1∪An
1 ×An

2
K(ω1, dω2) = X(ω1)

for every ω1 ∈ Ω1. Hence, once again, monotone convergence yields

P [A1 ×A2] =

�

Ω1

X(ω1)P1(dω1) =
��

Ω1

Xn(ω1)P1(dω1) =
�

P [An
1 ×An

2 ]. (1.3)

showing the σ-additivity. It follows that we can apply Caratheodory’s Theorem ensuring the existence of
a unique measure P on F satisfying

P [A1 ×A2] =

�

A1

K(ω1, A2)P1(dω1), A1 ×A2 ∈ F1 ×F2.

Let us now show that (1.2) holds. Define the collection C of those A ∈ F such that (1.2) holds. For
A = A1 × A2, it follows that Aω1 = A2 if ω1 ∈ A1 and ∅ otherwise. It follows that K(ω1, Aω1) =
1A1

(ω1)K(ω1, A2) showing that F1 × F2 ⊆ C. In particular, Ω ∈ C. Furthermore, for every pairwise
disjoint sequence (An) of elements in C, denoting A = ∪An, it follows from monotone convergence that

P [A] =
�

P [An] =

�

Ω1

�
K(ω1, A

n
ω1
)P1(dω1)

=

�

Ω1

K(ω1,∪An
ω1
)P (dω1) =

�

Ω1

K(ω1, Aω1
)P (dω1)

31Indeed, K(ω1, Aω1 ) =
�
Ω2

1A(ω1,ω2)K(ω1, dω2) for every ω1.
32Actually, product of semi-rings are semi-rings.
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showing that A ∈ C. Finally, for A ∈ C, it follows that

P [Ac] = 1− P [A] =

�

Ω1

(1−K(ω1, Aω1))P (dω1) =

�

Ω1

K(ω1, A
c
ω1
)P (dω1)

showing that Ac ∈ C. Hence, C is a λ-system that contains the π-system F1 × F2. Hence, by Dynkin
π-λ-lemma, it follows that σ(F1×F2) ⊆ C ⊆ F = σ(F1×F2) showing that C = F , that is, (1.2) holds
for every A ∈ F . As for (1.1), it follows from the fact that every positive random variable X : Ω → R
can be approximated by step functions ending the proof. �

Definition 1.66. With the notations of Theorem 1.65, we denote P = P1 ⊗ K. In the case where
K(ω1, ·) = P2 for all ω1 ∈ Ω1 for some measure P2 on F2, then P is called the product measure of P1

and P2 on the product space and is denoted by P = P1 ⊗ P2.

In the case of a product measure due to the symetry, it holds in particular
�

Ω

X(ω)P (dω) =

�

Ω1

��

Ω2

X(ω1,ω2)P2(dω2)

�
P1(dω1) =

�

Ω2

��

Ω1

X(ω1,ω2)P1(dω1)

�
P2(dω2)

Corollary 1.67. Let X be a positive random variable on some probability space (Ω,F , P ), then it holds

E[X] =

� ∞

0

P [X > x]λ(dx)

where λ is the Lebesgue measure on R.

Proof. For almost all ω ∈ Ω, X(ω) ≥ 0, and therefore

X(ω) =

� X(ω)

0

λ(dx) =

� ∞

0

1{X(ω)>x}λ(dx)

where λ is the Lebesgue measure on R. Since (ω, x) �→ 1{X(ω)>x} is a F ⊗ B(R)-measurable function,
by Fubini-Tonelli for the product measure P ⊗ λ, it holds

E [X] =

�

Ω

��

R
1{X(ω)>x}λ(dx)

�
P (dω) =

�

Ω×R
1{X(ω)>x}P ⊗ λ(dωdx)

=

�

R

��

Ω

1{X(ω)>x}P (dω)

�
λ(dx) =

�

R
E
�
1{X>x}

�
λ(dx) =

�

R
P [X > x]λ(dx). �

We now address the stochastic variant of Fubini’s theorem since we considered stochastic kernel instead
of a simple probability measure. Let X and Y be two random variables on some probability space
(Ω,F , P ). We consider the probability measure P(X,Y ) on the product Borel σ-algebra of R2 given by

P(X,Y )[B] = P [(X,Y ) ∈ B] , B ∈ B(R2)

We suppose that this joint distribution P(X,Y ) is given by P1 ⊗ K for some probability measure P1 on
B(R) and a stochastic kernel K on R× B(R). Note that by Tonelli’s Theorem, it holds

PX [B1] = P [X ∈ B1] = P [(X,Y ) ∈ B1 × R] = P(X,Y )[B1 × R]

=

�

R
1B1(x)K(x,R)P1(dx) =

�

R
1B1(x)P1(dx) = P1[A1]

showing that PX = P1.
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Theorem 1.68. Let X and Y be two random variables which joint distribution is given by P1⊗K where
P1 = PX and K is a stochastic kernel on R × B(R). For every positive random variable g : R2 → R+

such that g(X,Y ) is integrable, it holds

E [g(X,Y )|σ(X)] =

�

R
g(X, y)K(X, dy)

P almost surely.

Proof. From Tonnelli’s Theorem’s proof, the function x �→ h(x) :=
�
R g(x, y)K(x, dy), x ∈ R is

measurable, and therefore

h(X) =

�

R
g(X, y)K(X, dy)

is a positive random variable. Let A ∈ σ(X). It follows that A = X−1(B) for some Borel set B ∈ R.
Therefore

E [1Ag(X,Y )] = E [1B(X)g(X,Y )] =

�

R2

1B(x)g(x, y)(P1 ⊗K)(dx, dy)

=

�

R2

1B(x)g(x, y)(P1 ⊗K)(dx, dy) =

�

R

��

R
s(x)g(x, y)K(x, dy)

�
P1(dx)

=

�

R
s(x)h(x)P1(dx) = E [1Ah(X)]

ending the proof. �
Remark 1.69. As in the previous theorem, let X and Y be two random variables which joint distribution
is given by P(X,Y ). Suppose that P(X,Y ) is absolutely continuous with respect to the Lebesgue measure
on R2, it follows that there exists a Lebesgue’s almost surely a unique positive function f(X,Y ) : R2 → R
with expectation 1 such that

E [g(X,Y )] =

�

R2

g(x, y)f(X,Y )(x, y)dxdy

It follows that the density of X and Y respectively are given by

fX(x) =

�

R
f(X,Y )(x, y)dy and fY (y) =

�

R
f(X,Y )(x, y)dx.

Defining

f(X|Y )(x, y) =
f(X,Y )(x, y)

fX(x)
1{fX(x)>0} + fY (y)(y)1{fX(x)=0}

Inspection shows that

K(x,A) =

�

A

f(X|Y )(x, y)dy

defines a Kernel. It holds

PX ⊗K(A×B) =

�

A

��

B

f(X,Y )(x, y)

fX(x)
1{fX(x)>0} + fY (y)(y)1{fX(x)=0}dy

�
fX(x)dx

=

�

A

�

B

f(X,Y )(x, y)dydx = P(X,Y )(A×B)

From the uniqueness assumption of Fubini-Tonelli’s theorem, it follows that P(X,Y ) = PX ⊗ K. And
following the theorem, it follows that

E [g(X,Y )] =

�

R2

g(x, y)f(X,Y )(x, y)dxdy =

�

R

��

R
g(x, y)f(Y |X)(x, y)dy

�
fX(x)dx �
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1.7. Uniform Integrability
Throughout the script, we may use the following notation

E[X;A] := E[1AX] as well as P [A;B] := P [A ∩B]

We finish this subsection with some results about uniform integrability. Note that for X ∈ L1, Lebesgues
dominated convergence implies that E[|X| ; |X| ≥ n] → 0. Uniform integrability is a similar requirement
but on a whole set of random variables.

Definition 1.70. A set H ⊆ L1 is called uniformly integrable if

sup
X∈H

E [|X| ; |X| ≥ n] → 0

Proposition 1.71. For H ⊆ L1, the following assertions are equivalent

(i) H is uniformly integrable;

(ii) the following two assertions holds

• H is bounded in L1, that is supX∈H E[|X|] < ∞;

• For every ε > 0 there exists δ > 0 such that

E [|X| ;A] ≤ ε

for all X ∈ H and A ∈ F such that P [A] ≤ δ.

(iii) There exists a Borel measurable function ϕ : R+ → R+ such that ϕ(x)/x → ∞ as x → ∞ for
which holds

sup
X∈H

E [ϕ(|X|)] < ∞.

Proof. Suppose that (i) holds. It follows that for n large enough we have E[|X| ; |X| ≥ n] ≤ 1 for all
X ∈ H . Hence E[|X|] ≤ n+ 1 for all X ∈ H showing that H is bounded in L1. Let further ε > 0 and
choose n large enough such that E[|X| ; |X| ≥ n] ≤ ε/2. Seting δ = ε/(2n), for every A ∈ F such that
P [A] ≤ δ, it follows that

E [|X| ;A] = E [|X| ;A ∩ {|X| ≥ n}] + E [|X| ;A ∩ {|X| < n}] ≤ nP [A] + ε/2 ≤ ε,

showing that (i) implies (ii).
Reciprocally, suppose that (i) holds. Denote by M = supX E[|X|] < ∞, and let ε > 0. There exists
δ > 0 such that E[X;A] ≤ ε for every A ∈ F with P [A] ≤ δ. Choose then n greater than M/δ. For
X ∈ H , Markov inequality yields

P [|X| ≥ n] ≤ E[|X|]
n

≤ M

n
≤ δ

Hence
sup
X∈H

E [|X| ; |X| ≥ n] ≤ ε

showing the uniform integrability of H .
Suppose that (iii) holds and denote by M = supX∈H E[ϕ(X)]. For ε > 0, there exists nε such that
ϕ(x) ≥ Mx/ε for every x ≥ nε. Hence

M ≥ sup
X∈H

E [ϕ(|X|)] ≥ sup
X∈H

E [ϕ(|X|); |X| ≥ nε] ≥ M sup
X∈H

E [|X| ; |X| ≥ nε] /ε
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showing that supn supX∈H E [|X| ; |X| ≥ n] ≤ supX∈H E [|X| ; |X| ≥ nε] ≤ ε and so the uniform
integrability of H .
Reciprocally assume (i) and choose a sequence (cn) which can always be chosen increasing, such that
supX∈H E[|X| ; |X| ≥ cn] ≤ 1/n3. Define the function ϕ : R+ as a piecewise linear, equal to 0 on
[0, c1] and the derivative equal to n on [cn, cn+1] which implies that ϕ(x)/x → ∞ as x → ∞. It follows
that

E[ϕ(|X|)] =
�

E[ϕ(|X|); cn ≤ |X| ≤ cn+1] =
�

n (E[|X| ∧ cn+1]− E[|X| ∧ cn])

However,

E[|X| ∧ cn+1]− E[|X| ∧ cn]

= E[|X| ; cn ≤ |X| < cn+1] + E[cn+1; |X| ≥ cn+1]− E[cn; |X| ≥ cn]

≤ E[|X| ; |X| ≥ cn] + E[|X| ; |X| ≥ cn+1] ≤ 2/n3

which shows that supX∈H E[ϕ(|X|)] ≤ �
2n/n3 < ∞. �

Theorem 1.72. Let (Xn) ⊆ L1 be a sequence of random variables such that Xn converges in probability
to a random variable X .33 Then, the following assertions are equivalent

(i) the sequence is uniformly integrable;34

(ii) Xn converges to X in L1.

(iii) �Xn�1 converges to �X�1
Proof. We show that (i) implies (ii). By Proposition 1.53, there exists a subsequence (Yn) of (Xn)
that converges P -almost surely to X . In particular, (Yn) is uniformly integrable. Using Fatou and the
L1 boundedness of the family (Xn), see Proposition 1.71, it follows that E[|Y |] ≤ lim inf E[|Y |n] ≤
supn E[|Y |n] < ∞ showing that X ∈ L1. It follows that the sequence (Xn − X) is uniformly inte-
grable and therefore without loss of generality we can assume that (Xn) is a uniform integrable family
converging in probability to 0. For ε > 0 it holds

E [|Xn|] = E [|Xn| ; |Xn| ≤ ε/2] + E [|Xn| ; |Xn| > ε/2] ≤ ε/2 + E [|Xn| ; |Xn| > ε/2]

By uniform integrability of the family (Xn), making use of Proposition 1.71, let δ > 0 such that
supn E[|Xn| ;A] ≤ ε/2 for every A ∈ F with P [A] ≤ δ. Further, by convergence of (Xn) in prob-
ability to 0, there exists n0 such that P [|Xn| > ε/2] ≤ δ for every n ≥ n0. Thus, for every n ≥ n0, it
holds E[|Xn|] ≤ ε/2 + supk≥n0

E[|Xn| ; |Xn| > ε/2] ≤ ε showing that Xn converges in L1 to 0.
The fact that (ii) implies (iii) is trivial from ||x|− |y|| ≤ |x− y|, and therefore we finish the proof by
showing that (iii) implies (i). For M > 0, define ϕM as being the identity on [0,M − 1], 0 on [M,∞[
and linearly interpolated on the remaining part of the real line. Let ε > 0 and using the dominated
convergence theorem, choose M such that E[|X|] − E[ϕM (|X|)] ≤ ε/2 since ϕM (|X|) converges to
and is dominated by |X| ∈ L1. By continuity of ϕM , it follows that ϕM (|Xn|) → ϕM (|X|) also
in probability. Now, since ϕM (|Xn|) ≤ M for every n, the dominated convergence theorem in its
convergence in probability fashion, see Proposition 1.53 yields E[ϕ(|Xn|)] → E[ϕM (|X|)]. Hence,
together with E[|Xn|] → E[|X|], there exists some integer n0 such that

E[|Xn|]− E[|X|] ≤ ε/4 and E[ϕM (|X|)]− E[ϕ(|Xn|)] ≤ ε/4

33That is P [|Xn −X| ≥ ε] → 0 for every ε.
34That is {Xn : n ∈ N} is uniformly integrable.
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for every n ≥ ε. Henceforth

E[|Xn| ; |Xn| ≥ M ] ≤ E[|Xn|]− E[ϕM (|Xn|)] ≤ ε/2 + E[|X|]− E[ϕM (|X|)] ≤ ε

for every n ≥ n0. Increases the value of M so that this inequality remains true for the remaining n ≥ n0,
to conclude the uniform integrability of (Xn). �
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