
2. Martingales

2.1. Stochastic Processes; Filtrations; Stopping Times
This lecture is about stochastic processes, that is we are interested in “time” dependent random outcome.
We denote the set of different times t by T.

Definition 2.1. A stochastic process – or simply process – is a family X = (Xt)t∈T of random variables
Xt : Ω → R indexed by T.

Intending to model the time, T should have a “direction”. Therefore, throughout this lecture, we always
assume that T is a subset of the positive extended real line [0,∞].35 We will assume that 0 ∈ T and
denote T := supT which might be ∞. If not otherwise specified, elements of T are designed by the
letter s, t, u, . . . .
For the first part of the lecture T will be discrete, that is T = {0, 1, . . .}. Later, as we construct the
stochastic integral, we consider more general times set such as T = [0, T ] where T > 0 is a fixed time
horizon or T = {2kT/2n : 0 ≤ k ≤ 2n, n ∈ N} the dyadic times points between 0 and T .
The mappings t �→ Xt(ω) for ω ∈ Ω are called the paths – or sample paths, trajectories – of the process.
A stochastic process X = (Xt)t=0,...,T may also be viewed as

• a single random variable

X : Ω× {0, . . . , T} −→ R
(ω, t) �−→ Xt(ω)

where the σ-algebra on Ω× {0, . . . , T} is given by the product σ-algebra F ⊗ 2{0,...,T}.

• a measurable function with values in the sample space

X : Ω −→ R× · · · × R = RT+1

ω �−→ (X0(ω), . . . , XT (ω))

where the σ-algebra on the sample space is the product Borel σ-algebra on RT+1.

Exercice 2.2. Show that the three definition of a stochastic process in finite discrete time are equivalent.♦

Example 2.3. Consider now our example of coin tossing but infinitely many times. As seen, the state
space is defined as follows

Ω =
�

t∈N
{−1, 1} = {−1, 1}N = {ω = (ωt) : ωt = ±1 for every t}

On each Ωt = {−1, 1} we consider the σ-algebra Ft = {∅, {−1}, {1}, {−1, 1}} and on Ω the product
σ-algebra F = ⊗Ft. We saw that it is generated by the finite product cylinders:

C = {ω = (ωt) ∈ Ω : ωtk = ek, k = 1, . . . n} (2.1)

for a given set of values ek ∈ {−1, 1}, and times tk ∈ N, k = 1, . . . , n. Suppose that the probability
of getting head, that is 1, for the coin toss is equal to p ∈ [0, 1], we can define on the collection of these
finite product cylinder R, which is a semi-ring, a content P : R → [0, 1] given by

P [C] = pl(1− p)n−l

35More generally, though, any directed set can be considered with or without an origin. For instance in statistical mechanics,
indexing a process by subsets of a countable set ordered by inclusion.
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for every C ∈ R of the form (2.1) where l is equal to the number of those k = 1, . . . , n where ek = 1.
We will show later that this content fulfills the sub-additivity property required in Caratheodory’s theorem
and therefore extends to a probability measure on Ω.
Now that we have a probability space at hand, we can define the stochastic processes X = (Xt) and
S = (St) by

X0(ω) = 0 and Xt(ω) =

�
1 if ωt = 1

−1 if ωt = −1
= ωt, t = 1, . . . , ω ∈ Ω

and

St = x0 +

t�

s=0

Xs, t = 0, 1, . . .

where x0 ∈ R is the start value, or start price of S. The stochastic process S is called the random walk
and the process X tells us what is the result of the coin toss at time t.
As an exercise in Ipython, make a plot of 5 sample paths of the random walk for

• an horizon of T = 10, 100, 1.000, 100.000;

• for p = 1/3, 1/2, 2/3. ♦

As such, a process is nothing else than an arbitrary family of random variables indexed by the time.
However, our intuitive understanding of a process rather corresponds to Xs “having less, or knowing
less” than Xt whenever s ≤ t. To model this intuition we use an increasing set of information.

Definition 2.4. A filtration F = (Ft)t∈T is a family of σ-algebras on Ω indexed by T such that Fs ⊆
Ft ⊆ F whenever s ≤ t with s, t ∈ T. A measurable space together with a filtration is called a filtered
space. A stochastic process X is F-adapted – or simply adapted – if Xt is Ft-measurable for every t ∈ T;

The σ-algebras in a filtration becomes finer and finer due the inclusion. It means that the considered
events at time t provide more information than the ones at previous times. Filtration can be given, but
also generated by stochastic processes.

Definition 2.5. Let X be a stochastic process. The family of σ-algebra

FX
t = σ(Xs : s ≤ t) := σ

��
X−1

s (A) : A ∈ B(R), s ≤ t
��

, t ∈ T

is a filtration called the filtration generated by X which we denote by FX .

The fact that the filtration generated by a stochastic process is indeed a filtration is easy to verify.

Example 2.6. In our random walk example, we did not specify a filtration, but we can consider the
following sequences of σ-algebras for t ∈ N0

• FX
t ;

• FS
t ;

• Gt := σ(St);

• Ht := σ(Xt);

As an exercise, try to figure out which sequence of sigma-algebra is a filtration give an expression for
their generators in the case where x0 = 0. ♦
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From now on, until we mention otherwise,

T = {0, 1, . . .}!!!!! and (Ω,F = (Ft)t∈T) is a filtrated space.

A further important notion in the theory of stochastic processes, are the so called stopping time. As an
illustration of which, consider the following game. You pay 10 Kuai and a coin will be tossed every
minute. If it is head you win one Kuai, if it is tail you loose one Kuai. So the evolution of your wealth as
times goes by follows

St := 10 +

t�

k=1

Xt

However you would like to leave the game before loosing too much money, that is, you stop the first time
you reach let’s say 3 kuai.

τ = inf {t : St ≤ 3}
This time however is no longer known but random since it depends on the random outcomes St(ω). This
is the same on financial markets, where investors wants to know the time until which a company might be
bankrupt for instance, or the time until they reach a certain level of wealth in their strategic investment.

Exercice 2.7. In the case when the coin toss is fair, what is the probability that you exit the game before
100 minutes? ♦

Intuitively, a random time gives information about when a random event occurs.

Definition 2.8. On a measurable space, a random time is a measurable mapping τ : Ω → T ∪ T . Given
a filtration, a random time is a stopping time if {τ ≤ t} ∈ Ft for every t ∈ T.

For a process X and a subset B of R, we define the hitting time of X in B as

τB(ω) = inf{t ∈ T : Xt(ω) ∈ B}.

This function is not necessarily random even if X is adapted, however we have the following.

Proposition 2.9. If X is an adapted process and B is Borel, then τB is a stopping time.

Proof. Let t ∈ T. Since T is discrete, the infimum is in fact a minimum. Hence, it follows that

{τB ≤ t} =
�

s=0,...,t

{Xs ∈ B}

Since X is adapted, it follows that As = {Xs ∈ B} ∈ Fs for every s. Furthermore, F being a filtration,
it holds Fs ⊆ Ft. Hence, As ∈ Fs for every s ≤ t. Finally, Ft being a σ-algebra, the finite union of As

for s ≤ t is also in Ft showing that {τB ≤ t} is a stopping time. �

Let us collect some standard properties of stopping times.

Proposition 2.10. The following assertions hold

(a) τ + σ, τ ∨ σ and τ ∧ σ are stopping times as soon as τ,σ are stopping times.

(b) lim τn is a stopping time as soon as (τn) is an increasing sequence of stopping times.

(c) If τ is a stopping time, then the collection Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft} is a σ-algebra and
τ is Fτ -measurable.
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(d) For any two stopping times, it holds Fσ ∩Fτ = Fσ∧τ . In particular, Fσ ⊆ Fτ , if σ ≤ τ . For every
integrable random variable X with respect to some probability on F , it holds E[E[X | Fσ] | Fτ ] =
E[X | Fσ∧τ ].

Proof. (a) follows from

{τ + σ ≤ t} =

t�

q=0

{σ ≤ t− q} ∩ {τ ≤ q} ∈ Ft

{τ ∨ σ ≤ t} = {τ ≤ t} ∩ {σ ≤ t} ∈ Ft and {τ ∧ σ ≤ t} = {τ ≤ t} ∪ {σ ≤ t} ∈ Ft

(b) follows from {lim τn ≤ t} = {τn ≤ t : for all n} = ∩n{τn ≤ t} ∈ Ft.

(c) Clearly ∅,Ω ∈ Fτ . For A ∈ Fτ it holds Ac ∩ {τ ≤ t} = (A ∪ {τ > t})c = [(A ∩ {τ ≤ t}) ∪ {τ ≤
t}c]c ∈ Ft. Finally, for (An) ⊆ Fτ it holds (∪An) ∩ {τ ≤ t} = ∪(An ∩ {τ ≤ t}) ∈ Ft.

(d) Follows from {τ ∧ σ ≤ t} = {τ ≤ t} ∪ {σ ≤ t}. Indeed, let A ∈ Fσ ∩ Fτ , it follows that
A ∩ {σ ≤ t} ∈ Ft and A ∩ {τ ≤ t} ∈ Ft for every t. Hence (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft

for every t, but (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) = A ∩ ({σ ≤ t} ∪ {τ ≤ t}) = A ∩ {σ ∧ τ ≤ t}
showing that A ∈ Fσ∧τ and therefore Fσ ∩ Fτ ⊆ Fσ∧τ . Reciprocally, let A ∈ Fτ∧σ , it follows that
A ∩ ({σ ≤ t} ∪ {τ ≤ t}) = (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft for every t. Since {σ ≤ t} ∈ Ft, it
follows that (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∩ {σ ≤ t} = A ∩ {σ ≤ t} is also in Ft for every t. Hence
A ∈ Fσ . Symetrically, A ∈ Fτ and therefore A ∈ Fσ ∩Fτ showing that Fσ∧τ ⊆ Fσ ∩Fτ . Let us show
that E[E[X|Fσ]|Fτ ] = E[X|Fσ∧τ ]. Let A ∈ Fσ∧τ . Since A ∈ Fσ ∩ Fτ , it follows that

E [E[E[X|Fσ]|Fτ ]1A] = E [E [E [X1A|Fσ] |Fτ ]] = E[X1A]

for every A ∈ Fσ∧τ . Thus, per definition of the conditional expectation, E[E[X | Fσ] | Fτ ] = E[X | Fσ∧τ ].
�

Proposition 2.11. Let X be an adapted process and τ a stopping time. If τ is finite, that is τ < ∞, then
Xτ (ω) := Xτ(ω)(ω) is an Fτ -measurable random variable. Furthermore, for every stopping time τ , the
process Xτ := (X·∧τ ) is an adapted process.

Proof. Let B be a Borel subset of R and τ be a finite stopping time. It holds

{Xτ ∈ B} = ∪ {Xτ ∈ B} ∩ {τ = t} = ∪ ({Xt ∈ B} ∩ {τ = t}) ∈ F

hence Xτ is measurable. Let A = {Xτ ∈ B} and fix t. It holds

A ∩ {τ ≤ t} = ∪s≤t ({Xs ∈ B} ∩ {τ = s})

However {Xs ∈ B} ∩ {τ = s} = {Xs ∈ B} ∩ {τ ≤ s} ∩ {τ ≤ s − 1}c ∈ Fs ⊆ Ft for every s ≤ t.
Hence, A ∩ {τ ≤ t} ∈ Ft for every t showing that A ∈ Fτ by definition. Thus Xτ is Fτ -measurable.
Let now τ be any stopping time, it follows that t∧ τ is a finite stopping time smaller than t, and therefore
Ft∧τ ⊆ Ft. Since Xτ

t = Xt∧τ is Ft∧τ -measurable, it is in particular Ft measurable so that Xτ is an
adapted process too. �

Let us now define one of the most important object of stochastic analysis, namely, the stochastic integral.
Given an adapted process X and a predictable process H , that is Ht is Ft−1-measurable for every t, we
denote by H •X the process

H •Xt = H0X0 +

t�

s=1

Hs (Xs −Xs−1) = H0X0 +

t�

s=1

HsΔXs.
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Lemma 2.12. The collection S of all predictable processes is a vector space. Given an adapted process
X , the stochastic integral with respect to X is a linear operator with values in the vector space of adapted
processes.
Furthermore, for every stopping time τ , predictable process H , the stopped process Hτ as well as the
process H1{·≤τ} are predictable. It holds

H1{·≤τ} •X = H •Xτ = (H •X)
τ
.

Proof. The fact that S is a vector space is direct, as well as the linearity of the stochastic integral. Let
now H be a predictable process and τ be a stopping time. Let us show that according to the previous
proposition, the adapted process Hτ is predictable. It holds Ω = {τ ≤ t− 1}∪ {t ≤ τ} = (∪s≤t−1{τ =
s})∪ {t ≤ τ}. For every s = 0, . . . , t− 1, it holds {τ = s} ∈ Fs ⊆ Ft−1. Also, {t ≤ τ} = {τ < t}c =
{τ ≤ t− 1}c ∈ Ft−1. Hence, we have a partition of Ω into Ft−1-measurable sets. It holds

Hτ
t =

t−1�

s=0

Ht∧τ1{τ=s} +Ht∧τ1{t≤τ} =

t−1�

s=0

Hs1{τ=s} +Ht1{t≤τ}

However Hs1{τ=s} is Fs-measurable as product of a Fs−1-measurable random variable Hs and Fs

measurable random variable 1{τ=s} for every s = 0, . . . , t−1. So they are in particular Ft−1-measurable
since F is a filtration. Also Ht1{t≤τ} is Ft−1-measurable random variable as product of the Ft−1-
measurable random variables Ht and 1{t≤τ}. It follows that Hτ

t is Ft−1-measurable as sum of Ft−1-
measurable random variables. As for the second case, since {t ≤ τ} is Ft−1-measurable for every t, it
follows that 1{·≤τ} is predictable and, therefore, so is H1{·≤τ}.
Let us show the equality per induction. The case t = 0 is trivial. Suppose that the equality holds up to time
t− 1, since H •Xt = H •Xt−1+Ht(Xt−Xt−1) we just have to show that (Ht1{t≤τ}(Xt−Xt−1)) =
(Ht(X

τ
t −Xτ

t−1)) = (Ht(Xt −Xt−1))
τ . This is however clear since Xτ

t −Xτ
t−1 = Xt∧τ −Xt−1∧τ is

equal to 0 on {τ ≤ t− 1} and Xτ −Xt−1 on {t ≤ τ}. �

In particular, since 1 •X = X , it follows that

1{·≤τ} •X = Xτ .

Stochastic integrals do have particular properties when the integrator belongs to the class of martingales.

2.2. Martingales
Let (Ω,F ,F = (Ft)t∈T, P ) be a filtrated probability space.

Definition 2.13. A process X is called a martingale if

a) X is adapted;

b) Xt is integrable for every t ∈ T;

c) Xs = E[Xt | Fs] whenever s ≤ t, s, t ∈ T.

A process X is called a super-martingale if instead of c) we require

c’) Xs ≥ E[Xt | Fs] whenever s ≤ t, s, t ∈ T.

A process X is called a sub-martingale if instead of c) we require

c”) Xs ≤ E[Xt | Fs] whenever s ≤ t, s, t ∈ T.
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We say that a martingale, super-martingale or sub-martingale X is closed on the right if there exists
ξ ∈ L1 such that E[ξ | Ft] = Xt, E[ξ|Ft] ≤ Xt or E[ξ|Ft] ≥ Xt, respectively, for every t ∈ T.

Remark 2.14. Note that a martingale is in particular a super- and a sub-martingale at the same time.
Furthermore, given ξ ∈ L1, the process given by Xt = E[ξ|Ft] for t ∈ T defines a martingale.36 �

Example 2.15. Consider the random walk S of example 2.3 in its own filtration FS . If

• p = 1/2, then S is a martingale;

• p ≥ 1/2, then S is a sub-martingale;

• p ≤ 1/2, then S is a super-martingale. ♦

Proposition 2.16. Let X be an adapted process and ϕ : R → R be a measurable function such that
ϕ(Xt) is integrable for every t.

• If X is a martingale and ϕ is convex, then Y = (ϕ(Xt)) is a sub-martingale;

• If X is a martingale and ϕ is concave, then Y = (ϕ(Xt)) is a super-martingale;

• If X is a sub-martingale and ϕ is convex and increasing, then Y = (ϕ(Xt)) is a sub-martingale.

Proof. Since a process Y is a sub-martingale if and only if −Y is a super-martingale and ϕ is convex
if and only if −ϕ is concave, we just show the first point to get the second. Clearly, Y is adapted.
By assumption Yt is integrable for every t. Finally, using Jensen’s inequality for conditional expec-
tation, and the martingale property Xs = E[Xt|Fs], it follows that E[Yt|Fs] = E[ϕ(Xt)|Fs] ≥
ϕ(E[Xt|Fs]) = ϕ(Xs) = Ys. If X is a sub-martingale and ϕ is convex and increasing, it holds
E[Yt|Fs] = E[ϕ(Xt)|Fs] ≥ ϕ(E[Xt|Fs]) ≥ ϕ(Xs) = Ys showing the sub-martingale property and
therefore the third point. �

Stochastic integration with respect to a martingale.

Proposition 2.17. Let H be a predictable process. The following holds true:

(i) If X is a martingale and H •Xt is integrable for every t, then H •X is a martingale.

(ii) If X is a super/sub-martingale, H ≥ 0 and H • Xt is integrable for every t, then H • X is a
super/sub-martingale.

Proof. Suppose that X is a martingale and H such that H •X is integrable. Adaptiveness is immediate.
From H being predictable, that is Ht+1 is Ft-measurable, and X is a martingale, that is E[Xt+1 −
Xt|Ft] = E[Xt+1|Ft]−Xt = 0, it follows

E [H •Xt+1|Ft] = E [H •Xt +Ht(Xt+1 −Xt)|Ft] = H •Xt+Ht+1E [Xt+1 −Xt|Ft] = H •Xt

The argumentation in the sub-martingale case is similar, using the fact that Ht+1 ≥ 0 and E[Xt+1 −
Xt|Ft] = E[Xt+1|Ft]−Xt ≥ 0 to get

E [H •Xt+1|Ft] = H •Xt +Ht+1E [Xt+1 −Xt|Ft] ≥ H •Xt

and similarly for the super-martingale case. �

36Why?
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Remark 2.18. Note that in Proposition 2.17, if there exists a constant C > 0 such that |Ht| < C for every
t, then H •Xt is integrable for every t as soon as X is integrable. Indeed,

E [|H •Xt|] ≤ E [|H0X0|] +
t�

s=1

E [|Ht||Xt −Xt−1|] ≤ 2C

t�

s=0

E[|Xt|] < ∞

So that the assumption |H • Xt| integrable for every t can be replaced by H uniformly bounded in (i)
and (ii) of Proposition 2.17. �

This remark allows to formulate the original Doob’s sampling’s theorem.

Corollary 2.19 (Doob’s optional sampling theorem). Let X be a (super/sub-)martingale and τ a stop-
ping time, then Xτ is a (super/sup-)martingale.

Proof. Let τ be a stopping time. It holds Xτ = H • X for the process H = 1{·≤τ}. However, H
is predictable, uniformly bounded since |Ht| ≤ 1 and positive. Hence, according to Proposition 2.17
together with Remark 2.18, it follows that Xτ is a (super/sup-)martingale. �

Proposition 2.20. If X is a martingale or super-martingale, then E[Xτ | Fσ] = Xσ or E[Xτ | Fσ] ≤
Xσ , respectively, for every pair of bounded stopping times σ ≤ τ .

Proof. Since τ ≤ t for some t, it follows that |Xτ | ≤ |X0| + · · · + |Xt| and thus Xτ is integrable. In
particular, by means of Proposition 2.17 and Lemma 2.12 for the predictable process H = 1{·≤τ}, it
follows that Xτ is a martingale. For A ∈ Fσ , it holds A ∩ {σ = s} ∈ Fs. Hence

E [(Xt −Xσ)1A] =
�

s≤k

E
�
(Xt −Xs)1A∩{σ=s}

�
=

�

s≤k

E
�
E [Xt −Xs | Fs] 1A∩{σ=s}

�
= 0,

showing that E[Xt | Fσ] = Xσ . Applying this to the stopped process Xτ yields the result. The proof in
the super-martingale case follows the same argumentation. �

Proposition 2.21 (Doob’s decomposition). Let X be an adapted process such that Xt is integrable for
every t. Then there exists a unique decomposition

X = M −A

where M is a martingale and A is a predictable process with A0 = 0 and At integrable for every t. This
decomposition is called the Doob de

Proof. Define A by A0 := 0 and At := At−1 − E[Xt − Xt−1|Ft−1] for every t ≥ 1. Then A is
predictable, satisfies A0 = 0 and At is integrable for every t. Further, M := X + A is a martingale.
Indeed, M is clearly adapted and Mt is integrable for every t. As for the martingale property it holds

E[Mt+1 −Mt|Ft] = E[Xt+1 +At+1 −Xt −At|Ft] = E[Xt+1 −Xt|Ft] +At+1 −At = 0.

The uniqueness follows, since a predictable martingale is constant. �

Proposition 2.22. Let X be an adapted process such that Xt is integrable for every t with Doob’s de-
composition X = M −A.

(i) The process X is a super-martingale if and only if A is increasing.

(ii) The process X is a sub-martingale if and only if A is decreasing.

Proof. Let X be a super-martingale, then E[Xt+1 − Xt|Ft] ≤ 0 holds for every t. With the Doob
decomposition X = M −A we obtain that E[Mt+1−At+1−Mt+At|Fn] ≤ 0 holds for every t. Hence
At ≤ At+1 for every t, that is A is increasing. Reading this proof backwards yields the other implication.
The sub-martingale case follows the same argumentation. �
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2.3. Martingale Convergence
Recall that:

T = N0 and T = supT = ∞
Given a martingale X , this section treats the questions whether there exists XT such that Xt → XT and
in which sense.

2.3.1. Almost Sure Convergence

The first building block for these questions is the so-called Doob’s up-crossing’s Lemma. Let X be a
process, x, y ∈ R with x < y, and F ⊆ T finite. We set

τ0 = 0

and recursively

τ1 = inf{t ∈ F : t ≥ τ0, Xt < x}
τ2 = inf{t ∈ F : t ≥ τ1, Xt > y}

...
τ2k−1 = inf{t ∈ F : t ≥ τ2k−2, Xt < x}

τ2k = inf{t ∈ F : t ≥ τ2k−1, Xt > y}

with the convention that the infimum over the empty set is infinite. We define the random quantity

UF (x, y,X(ω)) = sup{k : τ2k(ω) < ∞}.

This corresponds to the strict positive number of up-crossing of [x, y] by t �→ Xt(ω) on F . For an infinite
set I ⊆ T we set

UI(x, y,X(ω)) = sup{UF (x, y,X(ω)) : F ⊆ I, F finite}.
Finally, we adopt the notation �s, t� := {s, s + 1, . . . , t} for every integers s ≤ t. Doob’s upcrossing’s
lemma reads as follows.

Lemma 2.23. Let X be a sub-martingale. Then for every two reals x < y, the number U�0,t�(x, y,X) of
up-crossing of [x, y] by s �→ Xs up to time t ∈ T, is a positive random variable and it holds

(y − x)E
�
U�0,t� (x, y,X)

�
≤ E

�
(Xt − x)

+
�
− E

�
(X0 − x)

+
�
. (2.2)

Proof. First of all, the random times τk, k = 0, 1, . . . defining the up-crossing function are all stopping
times. Since �0, t� is a discrete interval here, it follows that U�0,t�(a, b,X) is a positive random variable.
Define now the predictable gamble strategy, that is, the predictable process

H =
�

k≥1

1]τ2k−1,τ2k],

for which holds H0 = 0. It is a predictable since it takes only values 0 and 1 and it holds

{Ht = 1} = ∪ {τ2k−1 < t} ∩ {τ2k < t}c ∈ Ft−1

This gamble strategy H is a bet on upcrossings. Note that by the definition of τ2k it follows that for every
ω ∈ Ω, either τ2k(ω) ≤ t or τ2k(ω) = ∞. Further, by the definition of U := U�0,t� (x, y,X) it holds that
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U(ω) ≤ t, and therefore τ2U(ω) ≤ t as well as τ2U(ω)+2 = ∞ for every ω. Finally, since U is a random
variable, it follows that τ2U is a random time.
We translate our problem at 0 by defining the process Y = (X − x)+. Since ϕ(z) = (z − x)+ is
increasing and convex function, it follows from Proposition 2.16 that the process Y is a sub-martingale.
It clearly holds that U also counts the number of up-crossings of [0, y − x] up to time t by s �→ Ys and
therefore

H • Yt(ω) =

t�

s=1

Hs(ω) (Ys(ω)− Ys−1(ω))

=

t�

s=1

�

k≥1

1]τ2k−1(ω),τ2k(ω)](s) (Ys(ω)− Ys−1(ω))

=
�

k≥1

τ2k(ω)∧t�

s=(τ2k−1(ω)+1)∧t

(Ys(ω)− Ys−1(ω))

Two cases may occur:

• If t = τ2U(ω), then it holds

H • Yt(ω) =

U(ω)�

k=1

�
Yτ2k(ω)(ω)− Yτ2k−1(ω)(ω)

�

• If t > τ2U(ω), since τ2U(ω)+2 = ∞ and therefore τ2U(ω)+2 ∧ t = t, then it holds

H • Yt(ω) =

U(ω)�

k=1

�
Yτ2k(ω)(ω)− Yτ2k−1(ω)(ω)

�
+

t�

s=(τ2(U(ω)+1)−1(ω)+1)∧t

(Ys(ω)− Ys−1(ω))

=

U(ω)�

k=1

�
Yτ2k(ω)(ω)− Yτ2k−1(ω)(ω)

�
+ Yt(ω)− Yτ2U(ω)+1(ω)∧t(ω)

So as a random variable, it holds

H • Yt =

U�

k=1

�
Yτ2k − Yτ2k−1

�
+ (Yt − Yτ2U+1

))1{t>τ2U}.

But if ττ2U(ω)+1(ω) = t, for the last term it follows that Yt(ω)− Yτ2U(ω)+1(ω)∧t(ω) = Yt(ω)− Yt(ω) = 0.
Hence, it holds

H • Yt =

U�

k=1

�
Yτ2k − Yτ2k−1

�
+ (Yt − Yτ2U+1

))1{t>τ2U+1}.

One the one hand, per definition, it holds that Yτ2k−1
= 0 for every k, and therefore, from the positivity

of Y it follows that
E
�
(Yt − Yτ2U+1

)1{t>τ2U}
�
≥ 0.

On the other hand, Yτ2k − Yτ2k−1
≥ (y − x) showing that

E[H•Yt] = E

�
U�

k=1

(Yτ2k − Yτ2k−1
)

�
+E

�
(Yt − Yτ2U+1

)1{t>τ2U+1}
�
≥ E

�
U�

k=1

(y − x)

�
= (y−x)E[U ].
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Defining Ks = 1 − Hs for every s ≥ 1 and K0 = 0 which is a positive predictable process, hence by
means of Proposition 2.17, it follows that K•Y is a submartingale and therefore E[K•Yt] ≥ E[K•Y0] =
0. Since K +H = 1{1≤·}, it follows that

(y − x)E [U ] ≤ E [H • Yt] ≤ E [H • Yt] + E[K • Yt] = E

�
t�

s=1

Ys − Ys−1

�

= E [Yt − Y0] = E
�
(Xt − x)

+
�
− E

�
(X0 − x)

+
�

which ends the proof. �

Remark 2.24. Given a process X , note that for a given ω ∈ Ω, the sample path t �→ Xt(ω) may have
asymptotically only four kinds of behavior.

• lim infXt(ω) = ∞, that is Xt(ω) → ∞;

• lim supXt(ω) = −∞, that is Xt(ω) → −∞;

• −∞ < lim infXt(ω) = lim supXt(ω) < ∞, that is limXt(ω) exists;

• lim infXt(ω) < lim supXt(ω), also called oscillatory discontinuity.

Saying that the sample path t �→ Xt(ω) is oscillatory discontinuous, is equivalent to the fact there exists
rationals q and r with lim infXt(ω) < q < r < lim supXt(ω) such that the number of up-crossing of
[q, r] of Xt(ω) on T is infinite, that is

UT(q, r,Xt(ω)) = sup
t∈T

U�0,t�(q, r,X(ω)) = ∞ �

Theorem 2.25. Let X be a sub-martingale such that supE[X+
t ] < ∞. Then Xt → XT almost surely

for some integrable random variable XT .

Proof. Note that if X is a sub-martingale, then supE[|X|t] < ∞ is equivalent to supE[X+
t ] < ∞.

Indeed, it follows from |X|t = 2X+
t −Xt and the sub-martingale property, that E[Xt] ≥ E[X0] > −∞.

Let

• A be the set of those ω ∈ Ω such that t �→ Xt(ω) is oscillatory discontinuous, that is, according to
Remark 2.24,

A =
�

q<r and q,r∈Q
{UT (q, r,X) = ∞} =

�

q<r and q,r∈Q

�
sup
t∈T

U�0,t�(q, r,X) = ∞
�

• B be the set of those ω ∈ Ω such that t �→ Xt(ω) has a real valued limit, that is

B = {∞ < lim infXt = lim supXt < ∞}

• C be the set of those ω ∈ Ω such that t �→ Xt(ω) diverges to either ∞ or −∞.

In other terms t �→ Xt converges to some extended random variable XT on B ∪ C. As for A, it is a
measurable set as a countable union of measurable sets. Furthermore, by means of Doob’s up-crossing’s
Lemma 2.23, as well as monotone convergence, the assumptions of the theorem yields

E

�
sup
t∈T

U�0,t�(q, r,X)

�
= sup

t∈T
E
�
U�0,t�(q, r,X)

�
≤ sup

t

�
E
�
(Xt − q)

+
�
− E

�
(X0 − q)

+
��

< ∞
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It follows that P [supt∈T U�0,t�(q, r,X) = ∞] = 0 from which follows

P [A] ≤
�

q<r and q,r∈Q
P

�
sup
t∈T

U�0,t�(q, r,X) = ∞
�
= 0.

Hence, P [B ∪C] = 1, showing that t �→ Xt converges almost surely to the extended real valued random
variable XT . Finally, by Fatou’s Lemma, E[|XT |] ≤ lim inf E[|Xt|] ≤ supE[|X|t] < ∞ showing
integrability of XT and also that P [XT = ∞ or XT = −∞] = P [C] = 0. �

Corollary 2.26. Let X be a super-martingale such that supt E[X−
t ] < ∞. Then Xt → XT almost

surely for some integrable random variable XT .

Proof. The process Y = −X is a submartingale which satisfies supE[Y +
t ] < ∞ since Y +

t = X−
t . By

Theorem 2.25 there exists YT integrable such that Yt → YT almost surely. Defining XT = −YT yields
the result. �

Applications of Almost Convergence Theorem for Martingales

Theorem 2.27. Let X be a martingale with X0 = 0. Suppose that |Xt+1−Xt| ≤ c for every t and some
constant c > 0. Then it holds

P [B ∪ C] = 1,

where

B = {= ∞ < lim infXt = lim supXt < ∞} and C = {lim infXt = −∞ and lim supXt = ∞} .

Proof. Define the stopping time τk = inf{t : Xt > k}. According to Doob’s sampling theorem, Corol-
lary 2.19, it follows that Xτk is a martingale such that supt E[(Xτk

t )+] ≤ k + c < ∞. Indeed, on
{t < τk}, it holds Xτk

t ≤ k and on {τk ≤ t}, it holds Xτk
t = Xτk ≤ Xτk−1 + (Xτk −Xτk−1) ≤ k + c.

By Theorem 2.25, limt→∞ Xτk
t exists almost surely. On {τk = ∞} the processes X and Xτk coincide,

so that limXt exists almost surely on {τk = ∞}. In particular limXt exists almost surely on
�

{τk = ∞} = {lim supXt < ∞} .

A similar argumentation for −X shows that limXt exists almost surely on {lim infXt > −∞}. That is
limXt exists almost surely on {lim infXt > −∞} ∪ {lim supXt < ∞} = Cc. It means that P [Cc \
B] = P [Cc ∩ Bc] = 0. Hence, taking complementation, it follows that P [B ∪ C] = P [(Cc ∩ Bc)] = 1
which ends the proof. �

Corollary 2.28. We suppose that F0 = {∅,Ω}. Let (At) be a sequence of elements in F such that
At ∈ Ft for every t. Then

lim supAt =
�

t

�

s≥t

As = {ω : ω ∈ At for infinitely many t} =
��

P (At|Ft−1) = ∞
�

holds almost surely, whereby P [At|Ft−1] = E[1At |Ft−1].

Proof. We define the process X as follows

X0 = 0 and Xt =

t�

s=1

1As
− P [As|Fs−1] , for t ≥ 1
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Since F0 = {∅,Ω}, it follows that X is a martingale. Indeed, X is clearly adapted by definition, and
|Xt| ≤ 2t so that X is integrable. Furthermore, E[X1 −X0|F0] = E[X1 −X0] = P [A1]− P [A1] = 0
and E[Xt −Xt−1|Ft−1] = E[1At

− E[1At
|Ft−1]|Ft−1] = E[E[1At

− 1At
|Ft−1|Ft−1] = 0 for every

t ≥ 2. Since |Xt+1 −Xt| ≤ 2 holds for every t, we may apply Theorem 2.27. On B = {lim infXt =
lim supXt ∈ R}, it holds

�
1At

= ∞ if, and only if,
�

P [An|Ft−1] = ∞.

On C = {lim infXt = −∞ and lim supXt = ∞} it holds
�

1At = ∞ and
�

P [At|Ft−1] = ∞.

Since P [B ∪ C] = 1 we deduce
�

1At = ∞ if, and only if,
�

P [At|Ft−1] = ∞

almost surely. Moreover, lim supAt = {� 1At
= ∞}, hence the claim follows. �

Corollary 2.29 (Borel-Cantelli). Let (At) be a sequence of elements in F .

(i) If
�

P [At] < ∞, then it holds P [lim supAt] = 0.

(ii) If (At) is an independent sequence and
�

P (At) = ∞, then it holds P [lim supAt] = 1.

Proof. We consider the filtration F = (Ft)t∈T given by F0 = {∅,Ω} and Ft := σ(As : s ≤ t) for t ≥ 1.
Define ξ :=

�
P [At|Ft−1]. The monotone convergence theorem as well as the tower property shows

that
E[ξ] = E

��
E[1At |Ft−1]

�
=

�
E[E[1At |Ft−1]] =

�
P [At].

(i) If
�

P [At] < ∞, then it holds P [ξ = ∞] = 0. Corollary 2.28 yields P [lim supAt] = 0.

(ii) Suppose that (At) is an independent sequence, therefore At is independent of Ft−1 which implies
P [At|Ft−1] = P [At] for all t. Hence

�
P [At|Ft−1] =

�
P [At] = ∞ almost surely and by Corollary

2.28 it follows that P [lim supAt] = 1. �

2.3.2. Lp-Convergence

The building block for Lp convergence are the so called Doob’s maximal inequalities. In the following,
given a process X we define the

• running supremum process X̄ by X̄t = sups≤t Xs;

• running infimum process
¯
X by X̄t = infs≤t Xs ;

• running absolute supremum process X∗ by X∗
t = sups≤t |Xs|

Proposition 2.30. The following assertions hold true.

(a) Let X be a sub-martingale and λ > 0. Then it holds

λP
�
X̄t ≥ λ

�
≤ E

�
1{X̄t≥λ}Xt

�
≤ E

�
X+

t

�
;

λP [
¯
Xt ≤ −λ] ≤ E

�
1{

¯
Xt>−λ}Xt

�
− E[X0] ≤ E

�
X+

t

�
− E [X0]
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(b) For X be a positive sub-martingale and p > 1, it holds
����sup
s≤t

Xs

����
p

≤ p

p− 1
�Xt�p .

Proof. (a) For the stopping time τ = inf{s : Xs ≥ λ}, observe that {τ ≤ t} = {X̄t ≥ λ}. Also, on
{τ ≤ t}, it holds Xτ

t = Xτ∧t ≥ λ. Hence, Xτ∧t = Xτ1{X̄t≥λ} +Xt1{τ>t} ≥ λ1{X̄t≥λ} +Xt1{τ>t}.
It also holds, Xt1{τ>t} ≥ −X−

t . All together, with Doob’s optional sampling theorem, and X being a
sub-martingale, we get

E [Xt] ≥ E [Xτ∧t] ≥ λP
�
X̄t ≥ λ

�
+ E

�
1{τ>t}Xt

�
≥ λP

�
X̄t ≥ λ

�
− E

�
X−

t

�
,

and conclude the first inequality by observing that E[X+
t ] = E[Xt]+E[X−

t ] and E[Xt]−E
�
1{τ>t}Xt

�
=

E[(1− 1{X̄t<λ})Xt] = E[1{X̄t≥λ}Xt].

As for the second inequality, for the stopping time σ = inf{s : Xs ≤ −λ}, observe that {σ ≤ t} =
{
¯
Xt ≤ −λ}. Also, on {σ ≤ t}, it holds Xσ

t = Xσ∧t ≤ −λ. Hence, Xσ∧t = Xσ1{
¯
Xt≤−λ}+Xt1{σ>t} ≤

−λ1{
¯
Xt≤−λ} + Xt1{σ>t}. All together, with Doob’s optional sampling theorem, and X being a sub-

martingale, we get

E [X0] ≤ E [Xσ∧t] ≤ −λP [
¯
Xt ≤ −λ] + E

�
1{σ>t}Xt

�
≤ −λP [

¯
Xt ≤ −λ] + E

�
X+

t

�

showing the second inequality by observing that E[1{σ>t}Xt] = E[1{
¯
Xt>−λ}Xt].

(b) Define the random variables Y = sups≤t Xs and Z = Xt = X+
t since X is positive. For ϕ an

increasing, right-continuous function with ϕ(0) = 0, by Fubini’s theorem and the previous inequalities,
it holds

E [ϕ(Y )] = E

�� ∞

0

1{λ≤Y }dϕ(λ)

�
=

� ∞

0

P [Y ≥ λ] dϕ(λ)

≤
� ∞

0

E
�
1{Y≥λ}Z

� dϕ(λ)
λ

= E

�
Z

� ∞

0

1{Y≥λ}
dϕ(λ)

λ

�
.

If we consider ϕ(λ) = λp, p > 1, and define q = p/(p − 1) for which holds 1/p + 1/q = 1, it follows
from Hölder’s inequality that

�Y �pp ≤ pE

�
Z

� ∞

0

1{Y≥λ}λ
p−2dλ

�
=

p

p− 1
E
�
ZY p−1

�
≤ q �Z�p

��Y p−1
��
q
= q �Z�p �Y �p/qp .

If 0 < �Y �p/qp < ∞, dividing the inequality by �Y �p/qp , noting that p− p/q = 1, yields
����sup
s≤t

Xs

����
p

= �Y �p ≤ q �Z�p = q �Xt�p ,

as desired. If �Y �p/qp = 0 the inequality is trivial. If �Y �p/qp = ∞, stop X at τn = inf{t : Xt ≥ n} for
every n, use the inequality for Xτn , which is still a positive a sub-martingale, and then pass to the limit
since lim τn ≥ t almost surely. �

Remark 2.31. In particular, if X is a martingale, and p > 1, then by Proposition 2.16, |X|p is a positive
sub-martingale, and so

�X∗
t �p = E

��
sup
s≤t

|Xs|
�p�1/p

= E

�
sup
s≤t

|Xs|p
�1/p

≤
�

p

p− 1

�
�Xt� (2.3)

for every p > 1. �
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Theorem 2.32 (Martingale convergence theorem). Let X be a martingale such that supt E[|Xt|p] <
∞ for some p > 1. Then, there exists a random variable XT ∈ Lp such that Xt → XT almost surely
and in Lp.

Proof. Since Jensen’s inequality yields E[X+
t ] ≤ E[|Xt|] ≤ E[|Xt|p]

1
p , it follows that supE[X+

t ] < ∞.
By the martingale convergence Theorem 2.25, there exists an integrable random variable XT for which
Xt → XT almost surely. We are left to show that the sequence |Xt −XT |p satisfies the assumptions of
Lebesgue’s dominated convergence. It holds

|Xt −XT |p ≤ c (|Xt|p + |XT |p) ≤ c (sup |Xt|p + |XT |p) .

On the one hand, by Fatou’s lemma we have E[|XT |p] ≤ lim inf E[|Xt|p] < ∞. On the other hand, by
means of Remark 2.31, it holds E[sups≤t |Xs|p] ≤ (p/(p − 1))pE[|Xt|p] showing that E[sup |Xt|p] =
supt E[sups≤t |Xs|p] ≤ (p/(p − 1))p supE[|Xt|p] < ∞. Thus, the dominated convergence theorem
yields Xt → XT in Lp. �

Application to the Law of Large Numbers We apply the Lp-convergence of martingales to show the
law of large numbers that states that the sample average of independently distributed random variables
with finite mean converges almost surely to its mean.

Theorem 2.33. Let X be a square integrable martingale for which holds

�
E
�
(Xt −Xt−1)

2
�
< ∞.

Then, the sequence (Xt) converges almost surely and in L2.

Beforehand, let us show the following lemma.

Lemma 2.34. Let X be a martingale such that Xt is square integrable for every t. It follows that

E [(Xu −Xt)Xs] = 0

E
�
(Xt −Xs)

2 |Fs

�
= E

�
X2

t |Fs

�
−X2

s

for every s ≤ t ≤ u.

Proof. Since s ≤ t ≤ u and X is a square integrable martingale, it follows from the properties of the
conditional expectation

E [(Xu −Xt)Xs] = E [E [(Xu −Xt)Xs|Ft]] = E [E [(Xu −Xt) |Ft]Xs] = 0

showing the first equality. The same reasons yield

E
�
(Xt −Xs)

2 |Fs

�
= E

�
X2

t |Fs

�
− E [XtXs|Fs]− E [(Xt −Xs)Xs|Fs]

= E
�
X2

t |Fs

�
−XsE [Xt|Fs]−XsE [Xt −Xs|Fs] = E

�
X2

t |Fs

�
−X2

s ,

showing the second equality. �
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Proof (of Theorem 2.33). For every t, by means of Lemma 2.34, it follows that

E
�
X2

t

�
= E

�
X2

0

�
+

t�

s=1

E
�
X2

s −X2
s−1

�
= E

�
X2

0

�
+

t�

s=1

E
�
E
�
X2

s −X2
s−1|Fs−1

��

= E
�
X2

0

�
+

t�

s=1

E
�
E
�
(Xs −Xs−1)

2 |Fs−1

��
= E

�
X2

0

�
+

t�

s=1

E
�
(Xs −Xs−1)

2
�

≤ E
�
X2

0

�
+
�

E
�
(Xs −Xs−1)

2
�

It follows that supt E
�
X2

t

�
< ∞ and therefore, by means of Theorem 2.32 it follows that Xt → XT

almost surely and in L2. �

Theorem 2.35. Let X be a martingale and a = (at) be an increasing sequence such that at → ∞. If�
E[(Xt −Xt−1)

2/a2t ] < ∞, then it follows that

Xt

at
−→ 0

almost surely. In particular, if supE[(Xt −Xt−1)
2] < ∞, then it holds

Xt

t
−→ 0

almost surely.

Proof. Define the process Y by Y0 = 0 and Yt =
�t

s=1(Xs − Xs−1)/as for t ≥ 1. It follows that Y
is a martingale. Indeed, adaptiveness and integrability are immediate since X is a martingale. As for the
martingale property, it holds

E [Yt − Yt−1|Ft] =
1

at
E [Xt −Xt−1|Ft] = 0.

Furthermore, it holds
�

E
�
(Yt − Yt−1)

2
�
=

� 1

a2t
E
�
(Xt −Xt−1)

2
�
< ∞

which by means of Theorem 2.33 implies that

Yt =

t�

s=1

Xs −Xs−1

as
−→ YT =

� Xt −Xt−1

at

almost surely and in L2. The Kornecker’s lemma states that if
�

bt/at < ∞ for two sequences (at) and
(bt) whereby (at) is an increasing sequence of strictly positive numbers, it follows that (

�
bt)/at = 0.37

Hence, applying Kronecker’s lemma, it follows that

Xt

at
=

1

at

t�

s=1

Xs −Xs−1 → 0

almost surely. In particular, if supE[(Xt − Xt−1)
2] < ∞ it follows that

�
E[(Xt − Xt−1)

2/t2] ≤
supE[(Xt −Xt−1)

2]
�

1/t2 < ∞ and the second assertion of the Theorem follows. �
37See in exercise.
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Corollary 2.36. Let (Xt) be a sequence of integrable independent random variables such that E[Xt] = 0
for every t and such that

�
E[X2

t ]/a
2
t < ∞ for some increasing sequence (at) of strictly positive real

numbers such that at → ∞. Then it holds

1

at

t�

s=1

Xs −→ 0

almost surely.

Proof. Define F0 = {∅,Ω} and Ft = σ(Xs : s ≤ t) and the process S by S0 = 0 and St =
�t

s=1 Xs.
It follows that S is a martingale. Indeed, it is integrable by assumption. It is furthermore adapted since F
is the filtration generated by X . Finally due to the independence, it follows that

E [St − St−1|Ft−1] = E [Xt|Ft−1] = E [Xt] = 0.

Furthermore, since � 1

a2t
E
�
(St − St−1)

2
�
=

� 1

a2t
E
�
X2

t

�
< ∞,

we can apply Theorem 2.35 to get
St

at
=

1

at

t�

s=1

Xs −→ 0

almost surely. �

Theorem 2.37 (Strong Law of Large Numbers). Let (Xt) be a sequence of integrable, independent,
and identically distributed random variables. Then it holds

1

t

t�

s=1

Xs → E [X1]

almost surely.

Proof. Step 1: Define first the countable family (At) as At = {|Xt| > t} of elements in F . Using the
fact that Xt ∼ X1 for every t and Fubini’s Theorem, it holds

�
P [At] =

�
P [|Xt| > t] =

�
P [|X1| > t] ≤

� ∞

0

P [|X1| > λ] dλ = E [|X1|] < ∞

By Borel-Cantelli, it follows that P [lim supAt] = 0. Defining Yt = Xt1Ac
t
, it follows that for almost all

ω ∈ Ω, there exists t0(ω) such that that for every t ≥ t0(ω) it holds Yt(ω) = Xt(ω). Hence

lim inf
1

t

�

s≤t

Xs = lim inf
1

t

�

s≤t

Ys as well as lim sup
1

t

�

s≤t

Xs = lim sup
1

t

�

s≤t

Ys,

and so we just have to show that
1

t

t�

s=1

Ys → E [Y1] = E [X1]

almost surely since Y1 = X1.
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Step 2: Let Zt = Yt − E[Yt] for every t which is an independent sequence of random variables due to
that fact that (Xt) and therefore (Yt) is an independent sequence of random variables. Furthermore, note
that

� E[Z2
t ]

t2
=

� E
�
(Yt − E[Yt])

2
�

t2
=

� E
�
Y 2
t

�
− E [Yt]

2

t2
≤

� E[Y 2
t ]

t2
.

By Fubini’s theorem, and the fact that P [|Yt| > s] = P [|Yt| > t] = 0 for every s ≥ t as well as
P [Yt > λ] ≤ P [Xt > λ] = P [X1 > λ] for every t, it holds

E
�
Y 2
t

�
= E

�� ∞

0

1{|Yt|>λ}2λdλ

�
=

� ∞

0

P [|Yt| > λ] 2λdλ ≤
� t

0

P [|X1| > λ] 2λdλ

The monotone convergence of Lebesgue yields

� 1

t2

� t

0

P [|X1| > λ] 2λdλ =

� ∞

0

� 1{t≥λ}
t2

P [|X1| > λ] 2λdλ.

For λ < 1, it holds

2λ
� 1

t2
= 2λ

π2

6
≤ 4λ ≤ 4,

and for λ ≥ 1, it holds

2λ
�

t≥λ

1

t2
≤ 2

λ
+ 2λ

� ∞

λ

1

x2
dx ≤ 2 + 2λ

1

λ
= 4.

Hence � E
�
Z2
t

�

t2
≤ 4

� ∞

0

P [|X1| > λ] dλ = 4E [|X1|] < ∞.

According to 2.36, it follows that (
�

s≤t Zs)/t → 0 almost surely.

Step 3: We finally show that (
�

s≤t Ys)/t → E[X1] almost surely. It holds

������
1

t

�

s≤t

Ys − E[X1]

������
≤

������
1

t

�

s≤t

Zs

������
+

1

t

�

s≤t

|E [Ys]− E [Xs]|

=

������
1

t

�

s≤t

Zs

������
+

1

t

�
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+ E


|X1|

1

t

�

s≤t

1{|X1|>s}


 = It + E[Jt].

We already shown in the previous step that It → 0 almost surely. On the other hand, it holds Jt ≤ |X1|
with E[|X1|] < ∞ and since (

�
s≤t 1{|X1|>s})/t → 0 almost surely, it follows that Jt → 0 almost

surely. Hence, by Lebesgue’s dominated convergence theorem, it follows that E[Jt] → 0 which ends the
proof. �
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