3. Markov Chain

We consider a countable state space S with σ-algebra $\mathcal{S}:=\sigma(S)$.
Definition 3.1. Given a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)$ on a probability space (Ω, \mathcal{F}, P), we call a process X with values in S a Markov chain, if
(i) X is adapted,
(ii) $P\left[X_{t+1} \in B \mid \mathcal{F}_{t}\right]=P\left[X_{t+1} \in B \mid X_{t}\right]$ for all t and $B \in \mathcal{S}$.

The property (ii) is called the Markov property.
A Markov chain is called time-homogeneous, if

$$
P\left[X_{t+1} \in B \mid X_{t}=x\right]=P\left[X_{1} \in B \mid X_{0}=x\right]
$$

holds for all $x \in S, B \in \mathcal{S}$ and t.
For a time-homogeneous Markov chain we define

$$
\begin{aligned}
\mu_{x} & :=P\left[X_{0}=x\right], \\
p_{x y} & :=P\left[X_{t+1}=y \mid X_{t}=x\right]
\end{aligned}
$$

for $x, y \in S$. The initial distribution $\mu:=\left(\mu_{x}\right)_{x \in S}$ is a random vector, that is, it holds $\sum_{x \in S} \mu_{x}=1$. We call $p_{i j}$ the transition probability from x to y. The transition matrix $p=\left(p_{x y}\right)_{x, y \in S}$ is a stochastic matrix, that is $\sum_{y \in S} p_{x y}=1$ for all $x \in S$.

Example 3.2. Let $S=\{1,2,3\}$ and $\mu:=\delta_{1}$.

We obtain

$$
p=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 4 & 1 / 4 \\
2 / 3 & 1 / 3 & 0
\end{array}\right) .
$$

Example 3.3 (random walk). Let Y be a stochastic process of independent random variables with values in \mathbb{Z}^{d}. Define $X_{t}:=\sum_{s=0}^{t} Y_{t}$ and $\mathcal{F}_{t}:=\sigma\left(X_{s}: s \leq t\right)$. For $y \in \mathbb{Z}^{d}$, it holds

$$
\begin{aligned}
& P\left[X_{t+1}=y \mid \mathcal{F}_{t}\right]=P\left[Y_{t+1}=y-X_{t} \mid \mathcal{F}_{t}\right]=\sum_{x \in \mathbb{Z}^{d}} P\left[Y_{t+1}=y-x \mid \mathcal{F}_{t}\right] 1_{\left\{X_{t}=x\right\}} \\
& =\sum_{x \in \mathbb{Z}^{d}} P\left[Y_{t+1}=y-x\right] 1_{\left\{X_{t}=x\right\}}=\sum_{x \in \mathbb{Z}^{d}} P\left[Y_{t+1}=y-x \mid X_{t}\right] 1_{\left\{X_{t}=x\right\}} \\
& \quad=P\left[Y_{t+1}=y-X_{t} \mid X_{t}\right]=P\left[X_{t+1}=y \mid X_{t}\right]
\end{aligned}
$$

Hence, for $B \subseteq \mathbb{Z}^{d}$, by monotone convergence we get

$$
P\left[X_{t+1} \in B \mid \mathcal{F}_{t}\right]=\sum_{y \in \mathbb{Z}^{d}} P\left[X_{t+1}=y \mid \mathcal{F}_{t}\right]=\sum_{y \in \mathbb{Z}^{d}} P\left[X_{t+1}=y \mid X_{t}\right]=P\left[X_{t+1} \in B \mid X_{t}\right]
$$

Therefore, X is a Markov chain. Suppose furthermore, that the process Y is identically distributed, then it holds

$$
P\left[X_{t+1}=y \mid X_{t}=x\right]=P\left[Y_{t}=y-x \mid X_{t}=x\right]=P\left[Y_{1}=y-x\right]=P\left[X_{1}=y \mid X_{0}=x\right]
$$

Therefore, it is in that case time-homogeneous.
Given a stochastic vector μ and a stochastic matrix p, the question is whether there exists a probability space $\left(\Omega, \mathcal{F}, P_{\mu}\right)$, a filtration \mathbb{F} and a stochastic process X such that X is a time-homogeneous Markov chain with start distribution μ and transition probability p. To do so, we define

- $\Omega=S^{\mathbb{N}_{0}}=\left\{\omega=\left(\omega_{t}\right): \omega_{t} \in S\right\} ;$
- $\mathcal{F}=\otimes_{t \in \mathbb{N}_{0}} \mathcal{S}$;
- X as being the canonical process, that is

$$
X_{t}(\omega)=\omega_{t}, \quad \omega=\left(\omega_{t}\right) \in \Omega
$$

- \mathbb{F} being the filtration generated by X, that is

$$
\mathcal{F}_{t}=\sigma\left(X_{s}: s \leq t\right)
$$

The product σ-algebra \mathcal{F} is generated by the semi-ring of finite product cylinders

$$
A=A_{0} \times \cdots \times A_{t} \times S \times S \times \cdots=\left\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{t} \in A_{t}\right\}, \quad A_{s} \in \mathcal{S}
$$

We define the function $P_{\mu}: \mathcal{R} \rightarrow[0,1]$ as follows

$$
P_{\mu}[A]:=\sum_{x_{0} \in A_{0}, \cdots, x_{t} \in A_{t}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}}
$$

This function is well defined. Indeed, let

$$
A=A_{0} \times \ldots \times A_{t} \times S \times S \times \ldots \quad \text { and } \quad B=B_{0} \times \ldots \times B_{s} \times S \times S \ldots
$$

be such that $A=B$ and without loss of generality, suppose that $s \leq t$. It follows that $A_{u}=B_{u}$ for every $u \leq s$ and $A_{u}=\mathcal{S}$ for $u=s+1, \ldots, t$. Hence, since p is a stochastic matrix, it follows that

$$
\begin{aligned}
P_{\mu}[A]= & \sum_{x_{0} \in A_{0}, \cdots, x_{t} \in A_{t}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}} \\
=\sum_{x_{0} \in A_{0}, \cdots, x_{s} \in A_{s}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{s-1} x_{s}} & \left(\sum_{x_{s+1} \in S, \cdots, x_{t} \in S} p_{x_{s} x_{s+1}} \cdots p_{x_{t-1} x_{t}}\right) \\
& =\sum_{x_{0} \in A_{0}, \cdots, x_{s} \in A_{s}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{s-1} x_{s}}=P_{\mu}[B]
\end{aligned}
$$

Clearly, $P[\emptyset]=0$ and since μ is a stochastic vector, it holds for $A_{0}=S$

$$
P_{\mu}[\Omega]=P\left[A_{0} \times S \times S \times \cdots\right]=\sum_{x_{0} \in S} \mu_{x_{0}}=1
$$

Let us show that P_{μ} is additive by taking a pairwise disjoint finite family $\left(A^{k}\right)_{k \leq n}$ of elements in \mathcal{R} such that $A=\cup_{k \leq n} A^{k}$ is also in \mathcal{R}. Denote by t the maximal dimension of the $\left(A^{k}\right)_{k \leq n}$ and A. By definition, it follows from the disjointness of the $\left(A^{k}\right)$ that

$$
\begin{aligned}
P_{\mu}[A] & =\sum_{x_{0} \in A_{0}, \cdots, x_{t} \in A_{t}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}}=\sum_{\omega \in A=\cup_{k \leq n} A^{k}} \mu_{\omega_{0}} p_{\omega_{0}, \omega_{1}} \cdots p_{\omega_{t-1} \omega_{t}} \\
& =\sum_{k \leq n} \sum_{\omega \in A^{k}} \mu_{\omega_{0}} p_{\omega_{0}, \omega_{1}} \cdots p_{\omega_{t-1} \omega_{t}}=\sum_{k \leq n} \sum_{x_{0} \in A_{0}^{k}, \ldots, x_{t} \in A_{t}^{k}} \mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}}=\sum_{k \leq n} P_{\mu}\left[A^{k}\right]
\end{aligned}
$$

Hence P_{μ} is finitely additive. We can therefore extend this measure to the ring \mathcal{C} generated by the semiring \mathcal{R}. Indeed, as mentioned after the Definition $1.33, \mathcal{C}$ is given by

$$
\mathcal{C}=\left\{\cup_{k \leq n} A^{k}: A^{1}, \ldots, A^{n} \in \mathcal{R} \text { pairwise disjoint }\right\}
$$

Therefore as mentioned after Definition 1.34, we can extend the function P_{μ} to \mathcal{C} as follows

$$
P_{\mu}[A]:=\sum_{k=1}^{n} P\left[A^{k}\right], \quad A=\cup_{k \leq n} A^{k}, A^{1}, \ldots, A^{n} \text { disjoints elements in } \mathcal{R}
$$

You can also check that $P_{\mu}: \mathcal{C} \rightarrow[0,1]$ is well defined and inherits the properties $P_{\mu}[\emptyset]=0, P_{\mu}[\Omega]=1$ and additivity. Since \mathcal{C} is in particular a semi-ring, we just have to show that P_{μ} is σ-additive. However, \mathcal{C} being a ring, we can apply Lemma 1.36 , that tells that σ-additivity is is equivalent to continuity at \emptyset. In other terms we have to show that if $\left(A^{n}\right)$ is a decreasing sequence of sets in \mathcal{C} such that $\lim A^{n}=$ $\cap A^{n}=\emptyset$, then it follows that $P_{\mu}\left[A^{n}\right] \rightarrow 0$. Suppose by contradiction that $P_{\mu}\left[A^{n}\right]>\varepsilon>0$ for every n. Since each A^{n} is a finite disjoint union of elements in \mathcal{R}, there exists t^{n} for every n such that after the coordinate t^{n}, A^{n} is the infinite product of S. Without loss of generality, up to re-indexing or adding some new sets, we can assume also that $t_{n}=n$. For ease of notations, given a set $A \subseteq \Omega$, we denote by A_{k} the projection of the first $k+1$ coordinates, so that it holds for instance ${ }^{38}$

$$
A^{n}=A_{n}^{n} \times S \times S \times
$$

And reciprocally, for a set $A_{n} \subseteq \prod_{k=0}^{n} S$, we denote by $A:=A_{n} \times S \times S \cdots$.
Since the state space $\prod_{k=0}^{n} S$ is countable and $P_{\mu}\left[A^{n}\right]=P_{\mu}\left[A_{n}^{n} \times S \times S \times \cdots\right] \geq \varepsilon$, it follows that we can choose a non-empty finite set $K_{n}^{n} \subseteq A_{n}^{n}$ such that

$$
P_{\mu}\left[A^{n} \backslash K^{n}\right]=P_{\mu}\left[\left(A_{n}^{n} \backslash K_{n}^{n}\right) \times S \times S \times \cdots\right] \leq \varepsilon / 2^{n+1}
$$

by the definition of P_{μ}. It follows that

$$
P_{\mu}\left[K^{n}\right]=P_{\mu}\left[K_{n}^{n} \times S \times S \times \ldots\right] \geq \varepsilon-\varepsilon / 2^{n+1}
$$

Now we define the sequence $\tilde{K}^{n}=\cap_{k=0}^{n} K^{k}$ which is a decreasing sequence per definition. Furthermore it holds

$$
P_{\mu}\left[A^{n} \backslash \tilde{K}^{n}\right]=P_{\mu}\left[\left(\cap_{k=0}^{n} A^{k}\right) \backslash\left(\cap_{k=0}^{n} K^{k}\right)\right] \leq \sum_{k=0}^{n} P_{\mu}\left[A^{k} \backslash K^{k}\right] \leq \varepsilon \sum_{k=0}^{n} 2^{-(k+1)} \leq \varepsilon / 2
$$

[^0]Hence

$$
P\left[\tilde{K}^{n}\right]=P_{\mu}\left[A^{n}\right]-P_{\mu}\left[A^{n} \backslash \tilde{K}^{n}\right] \geq \varepsilon-\varepsilon / 2=\varepsilon / 2
$$

for every n. However, since \tilde{K}_{0}^{n} is finite, decreasing and $P_{\mu}\left[\tilde{K}_{0}^{n} \times S \times S \times \cdots\right] \geq P_{\mu}\left[\tilde{K}^{n}\right] \geq \varepsilon>2$, it follows that there must exists $\omega_{0} \in \tilde{K}_{n}^{0}$ for every n. The same argumentation for \tilde{K}_{1}^{n}, shows that there must exists ω_{1} such that $\left(\omega_{0}, \omega_{1}\right) \in \tilde{K}_{1}^{n}$ for every n. Doing so, construct a sequence $\omega=\left(\omega_{0}, \omega_{1}, \ldots\right) \in$ Ω such that $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{n}\right) \in \tilde{K}_{n}^{n}$ for every n. Since $\tilde{K}^{n}=\tilde{K}_{n}^{n} \times S \times S \times \ldots$, it follows that $\omega \in \tilde{K}^{n}$ for every n, which contradicts however the emptyness of $\cap \tilde{K}^{n}$. Hence, P_{μ} is σ-additive.
This argumentation allows to show the following proposition.
Proposition 3.4. Let μ be a probability vector and p a probability matrix with values in \mathbb{R}^{S}. Then there exists a probability measure P_{μ} on (Ω, \mathcal{F}) where $\Omega=S^{\mathbb{N}_{0}}, \mathcal{F}=\otimes_{\mathbb{N}_{0}} \mathcal{S}$ such that the canonical process X given by

$$
X_{t}(\omega)=\omega_{t}, \quad \omega=\left(\omega_{t}\right) \in \Omega
$$

is a time-homegeneous Markov chain under P_{μ} with initial distribution μ and transition probability p in its own filtration \mathbb{F} given by

$$
\mathcal{F}_{t}=\sigma\left(X_{s}: s \leq t\right)
$$

Proof. We already constructed the probability measure P_{μ}, we are left to show that X is a time-homogeneous Markov chain under P_{μ} with initial distribution μ and transition probability p in its own filtration \mathbb{F}. Adaptiveness of X follows immediately. As for the Markov and time homogenity property, on the one hand it holds

$$
\begin{aligned}
P_{\mu}\left[X_{t+1}\right. & \left.=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right] \\
& =\frac{P_{\mu}\left[X_{t+1}=x_{t+1}, X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]}{P_{\mu}\left[X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]}=\frac{\mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}} p_{x_{t}, x_{t+1}}}{\mu_{x_{0}} p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}}}=p_{x_{t} x_{t+1}}
\end{aligned}
$$

whereas

$$
\begin{aligned}
& P_{\mu}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& =\frac{P_{\mu}\left[X_{t+1}=x_{t+1}, X_{t}=x_{t}\right]}{P_{\mu}\left[X_{t}=x_{t}\right]}=\frac{P_{\mu}\left[X_{t+1}=x_{t+1}, X_{t}=x_{t}, X_{t-1} \in S, \ldots, X_{0} \in S\right]}{P_{\mu}\left[X_{t}=x_{t}, X_{t-1} \in S \ldots, X_{0} \in S\right]} \\
& =\frac{\left(\sum_{x_{0} \in S, \ldots, x_{t-1} \in S} \mu_{x_{0}} p_{\left.x_{0} x_{1} \cdots p_{x_{t-2} x_{t-1}}\right)}^{\left(\sum_{x_{0} \in S, \ldots, x_{t-1} \in S} \mu_{x_{0} x_{t-1}} p_{x_{t}, x_{t+1}}\right.}\right.}{\left(p_{x_{0} x_{1} \cdots p_{x_{t-2} x_{t-1}}}\right) p_{x_{t-1} x_{t}}}=p_{x_{t} x_{t+1}}
\end{aligned}
$$

showing that

$$
P_{\mu}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=P_{\mu}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right]=P_{\mu}\left[X_{1}=x_{t+1} \mid X_{0}=x_{t}\right]
$$

and therefore the time-homogeneity property. As for the Markov property, by monotone convergence, it
holds

$$
\begin{gathered}
P_{\mu}\left[X_{t+1} \in A \mid \mathcal{F}_{t}\right]=\sum_{x_{0}, \ldots x_{t} \in S} P_{\mu}\left[X_{t+1} \in B \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right] 1_{\left\{X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right\}} \\
=\sum_{x_{t+1} \in B} \sum_{x_{0}, \ldots x_{t} \in S} P_{\mu}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right] 1_{\left\{X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right\}} \\
=\sum_{x_{t+1} \in B} \sum_{x_{0}, \ldots x_{t} \in S} P_{\mu}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] 1_{\left\{X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right\}} \\
=\sum_{x_{0}, \ldots x_{t} \in S} P_{\mu}\left[X_{t+1} \in B \mid X_{t}=x_{t}\right] 1_{\left\{X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right\}} \\
=\sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B \mid X_{t}=x_{t}\right] 1_{\left\{X_{t}=x_{t}\right\}}\left(\sum_{x_{0}, \ldots x_{t-1} \in S} 1_{\left\{X_{t-1}=x_{t-1}, \ldots, X_{0}=x_{0}\right\}}\right) \\
=\sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B \mid X_{t}=x_{t}\right] 1_{\left\{X_{t}=x_{t}\right\}}=P_{\mu}\left[X_{t+1} \in B \mid X_{t}\right]
\end{gathered}
$$

which ends the proof.
Remark 3.5. For a time-homogeneous Markov chain X on some arbitrary filtrated probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ with values in S, start distribution $\mu_{x}=P\left[X_{0}=x\right]$ and transition probability $p_{x y}=$ $P\left[X_{t+1}=y \mid X_{t}=x\right]$ let P_{μ} denote the respective probability measure on the canonical space $\left(S^{\mathbb{N}_{0}}, \otimes_{\mathbb{N}_{0}} \mathcal{S}\right)$. Then it holds

$$
P_{\mu}[A]=P_{X}[A]=P[X \in A], \quad A \in \mathcal{F}
$$

So, without loss of generality, it is therefore enough to consider time-homogeneous Markov chains on the canonical space.

Throughout this Chapter we always consider a time homogeneous Markov chain on the canonical space! Hence, from now on, X denotes the canonical process on $(\Omega, \mathcal{F})=\left(S^{\mathbb{N}_{0}}, \otimes_{\mathbb{N}_{0}} \mathcal{S}\right)$.
We define the shift-operator

$$
\begin{aligned}
\theta_{s}: \Omega & \longrightarrow \Omega \\
\omega=\left(\omega_{t}\right) & \longmapsto \theta_{s}(\omega)=\left(\omega_{t+s}\right)
\end{aligned}
$$

Theorem 3.6 (Markov property). Let H be a bounded random variable. Then

$$
E_{\mu}\left[H \cdot \theta_{t} \mid \mathcal{F}_{t}\right]=E_{X_{t}}[H]
$$

where

$$
E_{X_{t}}[H]=\sum_{x \in S} E_{x}[H] 1_{\left\{X_{t}=x\right\}}
$$

and E_{x} is the expectation under the measure $P_{x}=P_{\delta_{x}}$ given by the Markov chain starting at time 0 from x with probability $1 .{ }^{39}$

Proof. Since $E_{X_{t}}[H]=\sum_{y \in S} E_{y}[H] 1_{\left\{X_{t}=y\right\}}$, it follows that $E_{X_{t}}[H]$ is $\mathcal{F}_{t^{\prime}}$-measurable. So we just have to show that for every $A \in \mathcal{F}_{t}$, it holds

$$
E_{\mu}\left[1_{A} H \circ \theta_{t}\right]=E_{\mu}\left[1_{A} E_{X_{t}}[H]\right] .
$$

${ }^{39}$ That is $P\left[X_{0}=x\right]=1$ and $P\left[X_{0}=y\right]=0$ for every $y \neq x$.

Step 1: We consider in this step bounded random variable H of the form $H=1_{B}$ where $B=\left\{X_{0}=\right.$ $\left.y_{0}, \ldots, X_{s}=y_{s}\right\} \in \mathcal{F}$ for $y_{0}, \ldots, y_{s} \in S$ whereby s is an arbitrary time.
Starting with $A=\left\{X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{t}=x_{t}\right\} \in \mathcal{F}_{t}$ for $x_{0}, \ldots, x_{t} \in S$, we have on the one hand

$$
\begin{aligned}
E_{\mu}\left[1_{A} H \cdot \theta_{t}\right] & =P_{\mu}\left[A \cap\left\{X_{t}=y_{0}, \ldots, X_{t+s}=x_{s}\right\}\right] \\
& =P_{\mu}\left[X_{0}=x_{0}, \cdots, X_{t}=x_{t}, X_{t}=y_{0}, \cdots, X_{t+s}=y_{s}\right] \\
& =\delta_{x_{t}}\left(y_{0}\right) \mu_{x_{0}} \cdots p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}} p_{y_{0} y_{1}} \cdots p_{y_{s-1} y_{s}}
\end{aligned}
$$

where $\delta_{x_{t}}\left(y_{0}\right)=1$ if $x_{t}=y_{0}$ and 0 otherwise. On the other hand, it holds

$$
\begin{aligned}
E_{\mu}\left[1_{A} E_{X_{t}}[H]\right] & =E_{\mu}\left[1_{\left\{X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right\}} E_{X_{t}}[H]\right]=E_{\mu}\left[1_{\left\{X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right\}} E_{x_{t}}[H]\right] \\
& =E_{\mu}\left[1_{\left\{X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right\}} P_{x_{t}}\left[X_{0}=y_{0}, \ldots, X_{t}=y_{t}\right]\right] \\
& =P_{\mu}\left[X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right] P_{x_{t}}\left[X_{0}=y_{0}, \ldots, X_{t}=y_{t}\right] \\
& =\mu_{x_{0}} \cdots p_{x_{0} x_{1}} \cdots p_{x_{t-1} x_{t}} \delta_{x_{t}}\left(y_{0}\right) p_{y_{0} y_{1}} \cdots p_{y_{s-1} y_{s}}
\end{aligned}
$$

Showing that $E_{\mu}\left[1_{A} H \cdot \theta_{t}\right]$ for every A of the form $A=\left\{X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{t}=x_{t}\right\}$.
However, every set $A \in \mathcal{F}_{t}$ is a countable disjoint union of sets $\left(A^{n}\right)$ of the form $\left\{X_{0}=x_{0}, X_{1}=\right.$ $\left.x_{1}, \ldots, X_{t}=x_{t}\right\}$. Hence, by dominated convergence, it follows that

$$
E_{\mu}\left[1_{A} H \circ \theta_{t}\right]=\sum E_{\mu}\left[1_{A_{n}} H \circ \theta_{t}\right]=\sum E_{\mu}\left[1_{A_{n}} E_{X_{t}}[H]\right]=E_{\mu}\left[1_{A} E_{X_{t}}[H]\right]
$$

for every $A \in \mathcal{F}_{t}$ showing the assertion in the case where $H=1_{B}$.
Step 2: Every positive bounded random variable H is the increasing limit of simple functions H^{n} of the form $H^{n}=\sum_{k \leq m_{n}} \alpha_{k}^{n} 1_{B_{k}^{n}}$ where $\alpha_{k}^{n} \in \mathbb{R}$, and each B_{k}^{n} is of the form $\left\{X_{0}=y_{0}, \ldots, X_{s}=y_{s}\right\}$. Hence, by monotone convergence, for every $A \in \mathcal{F}_{t}$ it holds from the previous point that

$$
E_{\mu}\left[1_{A} H \circ \theta_{t}\right]=\lim _{n} \sum_{k=1}^{n} \alpha_{k}^{n} E_{\mu}\left[1_{A} 1_{B_{k}^{n}} \circ \theta_{t}\right]=\lim _{n} \sum_{k=1}^{n} \alpha_{k}^{n} E_{\mu}\left[1_{A} E_{X_{t}}\left[1_{B_{n}^{k}}\right]\right]=E_{\mu}\left[1_{A} E_{X_{t}}[H]\right]
$$

showing that for every bounded positive random variable, it holds

$$
E_{\mu}\left[H \circ \theta_{t} \mid \mathcal{F}_{t}\right]=E_{X_{t}}[H] .
$$

The general case of bounded random variables follows from applying the positive case to H^{+}and H^{-} and taking the difference.

Theorem 3.7 (Chapman-Kolmogorov). For every two times s and t as well as every two states x and z in S, it holds

$$
P_{x}\left[X_{t+s}=z\right]=\sum_{y \in S} P_{x}\left[X_{t}=y\right] P_{y}\left[X_{s}=z\right]
$$

Proof. By Theorem 3.6 we get

$$
\begin{aligned}
& P_{x}\left[X_{t+s}=z\right]=E_{x}\left[1_{\left\{X_{t+s}=z\right\}}\right]=E_{x}\left[E_{x}\left[1_{\left\{X_{t+s=z}\right\}} \mid \mathcal{F}_{t}\right]\right] \\
& \quad=E_{x}\left[E_{x}\left[1_{\left\{X_{s=z}\right\}} \circ \theta_{t} \mid \mathcal{F}_{t}\right]\right]=E_{x}\left[E_{X_{t}}\left[1_{\left\{X_{s}=z\right\}}\right]\right]=\sum_{y \in S} E_{x}\left[E_{y}\left[1_{\left\{X_{s}=z\right\}}\right] 1_{\left\{X_{t}=y\right\}}\right] \\
& =\sum_{y \in S} E_{x}\left[1_{\left\{X_{t}=y\right\}}\right] E_{y}\left[1_{\left\{X_{s}=z\right\}}\right]=\sum_{y \in S} P_{x}\left[X_{t}=y\right] P_{y}\left[X_{s}=z\right] .
\end{aligned}
$$

Remark 3.8 (a repetition on Markov chains). Given a time homogeneous Markov Chain, we define per induction ${ }^{40}$

$$
p_{x y}^{1}:=p_{x y} ; \quad p_{x y}^{2}:=\sum_{z \in S} p_{x z} p_{z y}, \quad \ldots, \quad p_{x y}^{k}:=\sum_{z \in S} p_{x z}^{k-1} p_{z y}, \quad \ldots
$$

so that

$$
P_{\mu}\left[X_{t}=y \mid X_{0}=x\right]=p_{x y}^{t}
$$

and by Chapman-Kolmogorov, it holds

$$
\begin{equation*}
p_{i j}^{t+s}=\sum_{z \in S} p_{x z}^{s} p_{z y}^{t} \tag{3.1}
\end{equation*}
$$

Theorem 3.9 (strong Markov property). Let H be a bounded random variable and τ be a stopping time. Then it holds

$$
1_{\{\tau<\infty\}} E_{\mu}\left[H \circ_{\tau} \mid \mathcal{F}_{\tau}\right]=1_{\{\tau<\infty\}} E_{X_{\tau}}[H]
$$

Proof. For every $A \in \mathcal{F}_{\tau}$ we get by Theorem 3.6 and the fact that $A \cap\{\tau=t\} \in \mathcal{F}_{t}$ for every t,

$$
\begin{aligned}
& E_{\mu}\left[1_{A} 1_{\{\tau<\infty\}} H \circ \theta_{\tau}\right]=\sum_{t} E_{\mu}\left[1_{A} 1_{\{\tau=t\}} H \circ \theta_{t}\right] \\
&=\sum_{t} E_{\mu}\left[1_{A} 1_{\{\tau=t\}} E_{X_{t}}[H]\right]=E_{\mu}\left[1_{A} 1_{\{\tau<\infty\}} E_{X_{\tau}}[H]\right]
\end{aligned}
$$

The claim follows.

3.1. Recurrence and transience

We are still considering a time homogeneous Markov chain with start distribution μ and transition probability p on the canonical space.

Definition 3.10. Given $y \in S$, define recursively

$$
\tau_{y}^{0}:=0, \quad \tau_{y}=\tau_{y}^{1}:=\inf \left\{t>\tau_{y}^{0}: X_{t}=y\right\}, \quad \ldots, \quad \tau_{y}^{k}:=\inf \left\{t>\tau_{y}^{k-1}: X_{t}=y\right\}
$$

Here τ_{y}^{k} denotes the k-th return time to the state y.
We further denote by

$$
\rho_{x y}:=P_{x}\left[\tau_{y}<\infty\right]
$$

the probability that starting from x, the Markov chain visit the state y at least once. We say that a time homogeneous Markov chain is

- recurrent: if $\rho_{x x}=1$;
- transient: if $\rho_{x x}<1$.

Theorem 3.11. For $x, y \in S$, it holds

$$
P_{x}\left[\tau_{y}^{k}<\infty\right]=\rho_{x y} \rho_{y y}^{k-1}
$$

[^1]Proof. We show it per induction. Per definition, it holds $P_{x}\left[\tau_{y}^{1}<\infty\right]=\rho_{x y}$. Suppose therefore that the claim holds for every $l=1, \ldots, k-1$ and we show it for k. Define $\tau=\tau_{y}^{k-1}$ and $H:=1_{\left\{\tau_{y}<\infty\right\}}$. Since $\left\{\tau_{y}^{k}<\infty\right\}=\left\{\tau_{y} \circ \theta_{\tau}<\infty\right\}$, we get that $1_{\{\tau<\infty\}}$ is bounded and \mathcal{F}_{τ}-measurable. Using the strong Markov property, Theorem 3.9, it follows that

$$
\begin{aligned}
& P_{x}\left[\tau_{y}^{k}<\infty\right]=P_{x}\left[\tau_{y} \circ \theta_{\tau}<\infty\right]=E_{x}\left[1_{\{\tau<\infty\}}\left(H \circ \theta_{\tau}\right)\right] \\
& =E_{x}\left[1_{\{\tau<\infty\}} E_{x}\left[H \circ \theta_{\tau} \mid \mathcal{F}_{\tau}\right]\right]=E_{x}\left[1_{\{\tau<\infty\}} E_{X_{\tau}}[H]\right]=E_{x}\left[1_{\{\tau<\infty\}} P_{y}\left[\tau_{y}<\infty\right]\right] \\
& \quad=\rho_{y y} P_{x}\left[\tau_{y}^{k-1}<\infty\right]=\rho_{y y} \rho_{x y} \rho_{y y}^{k-2}=\rho_{x y} \rho_{y y}^{k-1} .
\end{aligned}
$$

Remark 3.12. It holds

$$
\cap_{k \in \mathbb{N}}\left\{\tau_{x}^{k}<\infty\right\}=\left\{X_{t}=x \text { for infinitely many time } t\right\}=\lim \sup \left\{X_{t}=x\right\}
$$

If y is recurrent it holds $P_{x}\left[\tau_{x}^{k}<\infty\right]=\rho_{x x}^{t}=1$ so that $P_{x}\left[\limsup \left\{X_{t}=x\right\}\right]=1$.
For $y \in S$ we define

$$
N_{y}:=\sum_{t} 1_{\left\{X_{t}=y\right\}},
$$

counting how often X visits in the state y.
Theorem 3.13. For $x \in S$, it holds
(i) x is recurrent implies $\left.E_{[} N_{x}\right]=\infty$.
(ii) $y \in S$ is transient implies $E_{x}\left[N_{y}\right]=\rho_{x y} /\left(1-\rho_{y y}\right)<\infty$.

In particular, x is recurrent if and only if $E_{x}\left[N_{x}\right]=\infty$.
Proof. (i) If x is recurrent, it holds

$$
E_{x}\left[N_{x}\right]=\sum_{k \in \mathbb{N}} P_{x}\left[N_{x} \geq k\right]=\sum_{k \in \mathbb{N}} P_{x}\left[\tau_{x}^{k}<\infty\right]=\sum_{k \in \mathbb{N}} \rho_{x x}^{k}=\sum_{k \in \mathbb{N}} 1=\infty
$$

(ii) If y is transient, then by Theorem 3.11 we obtain

$$
E_{x}\left[N_{y}\right]=\sum_{k \in \mathbb{N}} P_{x}\left[N_{y} \geq k\right]=\sum_{k \in \mathbb{N}} P_{x}\left[\tau_{y}^{k}<\infty\right]=\sum_{k \in \mathbb{N}} \rho_{x y} \rho_{y y}^{k-1}=\rho_{x y} \frac{1}{1-\rho_{y y}}
$$

Theorem 3.14. Let x and y be two states in S, where x is recurrent and $\rho_{x y}>0$. Then y is recurrent and $\rho_{y x}=1$.

Proof. Let us first show that $\rho_{y x}=1$. Since x is recurrent, it follows that $\tau_{x}(\omega)<\infty$ for almost all $\omega \in \Omega$. Hence, for almost all $\omega \in \Omega$ such that $\tau_{y}(\omega)<\infty$ we get $\tau_{x} \circ \theta_{\tau_{y}}(\omega)<\infty$. Thus with $H:=1_{\left\{\tau_{x}=\infty\right\}}$, Theorem 3.9, and the fact that $X_{\tau_{y}}=y$, we get

$$
\begin{array}{r}
0=P_{x}\left[\tau_{y}<\infty, \tau_{x} \circ \theta_{\tau_{y}}=\infty\right]=E_{x}\left[1_{\left\{\tau_{y}<\infty\right\}} 1_{\left\{\tau_{x} \circ \theta_{\tau_{y}}=\infty\right\}}\right]=E_{x}\left[1_{\left\{\tau_{y}<\infty\right\}} E_{x}\left[H \circ \theta_{\tau_{y}} \mid \mathcal{F}_{\tau_{y}}\right]\right] \\
=E_{x}\left[1_{\left\{\tau_{y}<\infty\right\}} E_{X_{\tau_{y}}}[H]\right]=E_{x}\left[1_{\left\{\tau_{y}<\infty\right\}} P_{y}\left[\tau_{x}=\infty\right]\right]=\rho_{x y}\left(1-\rho_{y x}\right) .
\end{array}
$$

Since $\rho_{x y}>0$, it must be that $\rho_{y x}=1$.

Let us finally show that y is recurrent. Let i and j be two states in S and $k \in \mathbb{N}$. Then by Theorem 3.7 and an induction we get $P_{i}\left[X_{k}=j\right]=p_{i j}^{k}$, see Remark 3.8. Since $\rho_{x y}>0$ and $\rho_{y x}>0$, there exist $k_{1}, k_{2} \in \mathbb{N}$ with $p_{x y}^{k_{1}}>0$ and $p_{y x}^{k_{2}}>0$. By Theorem 3.7 we get

$$
p_{y y}^{k_{1}+t+k_{2}} \geq p_{y x}^{k_{2}} p_{x x}^{t} p_{x y}^{k_{1}}
$$

so that

$$
\begin{aligned}
& E_{y}\left[N_{y}\right]=\sum_{t} P_{y}\left[X_{t}=y\right]=\sum_{t} p_{y y}^{t} \geq \sum_{t} p_{y x}^{k_{2}} p_{x x}^{t} p_{x y}^{k_{1}} \\
&=p_{y x}^{k_{2}}\left(\sum_{t \in \mathbb{N}} p_{x x}^{t}\right) p_{x y}^{k_{1}}=p_{y x}^{k_{2}} E_{x}\left[N_{x}\right] p_{x y}^{k_{1}}=\infty
\end{aligned}
$$

Theorem 3.13 implies that y is recurrent.

[^0]: ${ }^{38}$ Indeed, after n, A^{n} is the infinite product of S.

[^1]: ${ }^{40} \mathrm{Be}$ aware that $p_{x y}^{k}$ is not $p_{x y}$ to the power k.

