3. Markov Chain

We consider a countable state space S with o-algebra S := o(.5).

Definition 3.1. Given a filtration ' = (F;) on a probability space (2, F, P), we call a process X with
values in S a Markov chain, if

(i) X is adapted,
(ll) p[Xt+1 € B|.Ff] = P[Xt+1 € B|X{»} foralltand B € S.

The property (ii) is called the Markov property.
A Markov chain is called time-homogeneous, if

P[Xt+1 S B|Xt = .f] = P[Xl S B|XQ = .’II}
holds forallz € S, B € S and t.
For a time-homogeneous Markov chain we define

We = P[Xo = z],
Pay = P [X¢p1 = y| X = 2]
for 2,y € S. The initial distribution y1 := (j15)es is a random vector, that is, it holds > oz = 1.

We call p;; the transition probability from z to y. The transition matrix p = (pgy)z,yes is a stochastic
matrix, thatis 3 g psy = 1forallz € S.

Example 3.2. Let S = {1,2,3} and p := 0;.

‘We obtain
0 1/2 1/2
p=|(1/2 1/4 1/4]. O
2/3 1/3 0

Example 3.3 (random walk). Let Y be a stochastic process of independent random variables with val-
ues in Z%. Define X; := ' _ Y; and F; := o(X,: s < t). Fory € Z%, it holds

PlXip1 =y|lF] =Pl =y — X|F) = > PYiy =y — 2| Fll{x,—a)

T€ZA

=Y PV =y—all{x,—} = 3 PlViy1 =y — 2[Xe]1{x,—a)
reZd zeZd

= P[Yip1 =y — Xo| Xi] = P[Xe1 = y| Xe.
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Hence, for B C Z?, by monotone convergence we get

P[Xip1 € BIF] =Y P[Xy1 =ylFl =Y P[Xi1 =y|Xi] = P[Xs41 € BIX{]
yeZ4 yeZ4

Therefore, X is a Markov chain. Suppose furthermore, that the process Y is identically distributed, then
it holds

P[Xii=ylXi=a] = P[Yi=y—alX,=a] = P[Vi = y—a] = P[X; = y|Xo = 1]
Therefore, it is in that case time-homogeneous. O

Given a stochastic vector x and a stochastic matrix p, the question is whether there exists a probability
space (92, F, P,), a filtration IF and a stochastic process X such that X is a time-homogeneous Markov
chain with start distribution y and transition probability p. To do so, we define

e 0 =8N ={w=(w):w €8}
o« F= ®t€NOS;
* X as being the canonical process, that is

Xi(w)=w, w=(w) €

* I being the filtration generated by X, that is

Fi=0(Xs:5<t)

The product o-algebra F is generated by the semi-ring of finite product cylinders
A=Agx XA xSxSx--={Xg€ Ay, X1 €Ay, -, X; € A}, A;€S.

We define the function P, : R — [0, 1] as follows

PH [A] = Z HzoProxs * " " Pri_qm4
To€A0, T €A

This function is well defined. Indeed, let

A=Ay x ... x Ay xSxSx... and B=Byx...xBsxS8xS5....

be such that A = B and without loss of generality, suppose that s < ¢. It follows that A,, = B,, for every

u<sand A, =S foru=s+1,...,t. Hence, since p is a stochastic matrix, it follows that
PM[A] = E HzoPzozy " " Pzi_12¢
ToE€AQ, ,xt EAL
= E HzoPzozy " Prs_1zs E Prozoiq " Pzi_r1z
To€EAQ, ks EA, Ts41E€S, -, €S

= Z HaoPzozy = Pay_ 1z, = Pp [B]

To€AQ, " ,TsEAs
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Clearly, P[()] = 0 and since y is a stochastic vector, it holds for 4y = S

POl =PlAgx Sx 8 x -] =Y iz, =1

zoES

Let us show that P, is additive by taking a pairwise disjoint finite family (A¥)j.<,, of elements in R such
that A = UkSnAk is also in R. Denote by ¢ the maximal dimension of the (Ak)kgn and A. By definition,
it follows from the disjointness of the (A*) that

PN[A] = § HazoProxy * " Pri1ze = § HewoPuwg,wy -+ -+ Pwp_qw;
z0€Ag,  , T EAy WEA=Ujp<, AF
_ _ _ k
= E E HewoPwo,wy -+ - Pwy 1wy = E E HzoPzoxy " Pry_1me = E P,[A"]
k<n we Ak k<n zoe Ak, ..z cA¥ k<n

Hence P, is finitely additive. We can therefore extend this measure to the ring C generated by the semi-
ring R. Indeed, as mentioned after the Definition 1.33, C is given by

C = {Ur<nAF: A',... A" € R pairwise disjoint} .

Therefore as mentioned after Definition 1.34, we can extend the function P, to C as follows
P,A] = Z P[AF], A=uUp<, A" A, .. A" disjoints elements in R
k=1

You can also check that P, : C — [0, 1] is well defined and inherits the properties P[] = 0, P,[Q] =1
and additivity. Since C is in particular a semi-ring, we just have to show that P, is o-additive. However,
C being a ring, we can apply Lemma 1.36, that tells that o-additivity is is equivalent to continuity at {.
In other terms we have to show that if (A™) is a decreasing sequence of sets in C such that lim A™ =
NA"™ = (), then it follows that P,[A"] — 0. Suppose by contradiction that P,[A"] > & > 0 for every
n. Since each A" is a finite disjoint union of elements in R, there exists ¢" for every n such that after
the coordinate ¢, A™ is the infinite product of S. Without loss of generality, up to re-indexing or adding
some new sets, we can assume also that ¢,, = n. For ease of notations, given a set A C (2, we denote by
Ay, the projection of the first k& + 1 coordinates, so that it holds for instance

A" =A7 x 8 x 8 x-

And reciprocally, for a set A, C [];_, S, wedenoteby A:=A, x S xS---.
Since the state space [[)_, S is countable and P,[A"] = P,[A? x S x S x ---] > ¢, it follows that we
can choose a non-empty finite set K, C A” such that

Bu[A™\ K™ = PUJ(AZ\KT) x S x 8 x -] < e/2" !
by the definition of P,,. It follows that
PJK" =P, [K" xS xSx..]>e—g/2"!

Now we define the sequence K" = oK * which is a decreasing sequence per definition. Furthermore
it holds

P [AF\EF] <) 27D <2
0 k=0

\E

Pu[A" \ K" = P, [(Ni—gA™) \ (MR=oK™)] <

£
I

38Indeed, after n, A is the infinite product of S.
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Hence
P [i{”} —P,[A"] - P, [A" \ K"} Se_c/2=¢/2

for every n. However, since K is finite, decreasing and P,[K§ x S x S x ---] > P,[K"] > ¢ > 2,
it follows that there must exists wy € K. 9 for every n. The same argumentation for K ', shows that there
must exists w; such that (wo,w;) € K7 for every n. Doing so, construct a sequence w = (wg, Wy, ...) €
Q such that (wg, w1, ..., w,) € f({: for every n. Since K" = f(ﬁ x S xS x...itfollows thatw € K"
for every n, which contradicts however the emptyness of NK". Hence, P, is o-additive.

This argumentation allows to show the following proposition.

Proposition 3.4. Let i be a probability vector and p a probability matrix with values in R®. Then there
exists a probability measure P, on (Q, F) where Q0 = SN, F = @n,S such that the canonical process
X given by

Xi(w) =wy, w=(w) €9,

is a time-homegeneous Markov chain under P, with initial distribution |1 and transition probability p in
its own filtration F given by
Fi=0(Xs:5<1t)

Proof. We already constructed the probability measure P,,, we are left to show that X is a time-homogeneous
Markov chain under P,, with initial distribution x and transition probability p in its own filtration F. Adap-
tiveness of X follows immediately. As for the Markov and time homogenity property, on the one hand it
holds

PM [Xt+1 = xH_l\Xt = Tty.-- ,XO = ],‘0]
- P, [(Xip1 =241, Xo = 24, .., Xo = 20] _ HzoPxozy " Pzy_r12Poy,wiqpr p
= —_— - Tt
P, (Xt = m4,..., Xo = 7] HzoPzozy **  Pzy_qay e
whereas

P,LL [Xt+1 = It—o—l‘Xt = II?t]
by (X1 = 241, Xy = 4] Py (Xip1 =241, Xy =24, X, 1€ 5,...,Xp € 9]

P, [X: = 2] B P Xi=z,X,-1€85...,X0€ 9]

§ HzoProzy * " Pzy_omi1 | Poy_raPoy,zeqy
TOES,...,.xt_1ES

= = Pzyzipa
Z HaoPromy " Pry_omi1 | Poy_1my
20€S,...,x1—1ES
showing that
Py [Xtp1 = 2441|Xe = 24, ..., Xo = 20] = Py [Xep1 = 21| X = 2] = P [ X1 = 2411] Xo = 24]

and therefore the time-homogeneity property. As for the Markov property, by monotone convergence, it
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holds

P, [Xiy1 € A|F] = Z P, [(Xi41 € BIXy = a4, ..., Xo = xo] Tx,=a,,.... Xo=20}

zg,...x4t €S

= Z Z Py [Xep1 = 2| Xe = a4, ..., Xo = mo] Lix,=a,,..., Xo=20}

T+41E€B zg,...x+ €S

= E E Py [Xip1 = 21| Xy = 2] Ly x, =0, ... Xo=x0}
Ti41€B x0,...c¢ €S

= Y PulXer1 € BIXe = @) 1{x,=0,... Xo=ro}

Zo,...24 €S

= Z P,u [Xt+1 € B|Xt = mt] 1{Xt:It} Z 1{Xt—1:$t—1a--wX0:zO}

€S To,...x4_1ES

= Z P, [ X1 € BIXy = 24| 1{x,=s,} = Pu[Xe41 € B|Xy]
Tt €S

which ends the proof. O

Remark 3.5. For a time-homogeneous Markov chain X on some arbitrary filtrated probability space
(Q, F,F, P) with values in S, start distribution p1, = P[X, = x] and transition probability p,, =
P[X;1+1 = y|X; = ] let P, denote the respective probability measure on the canonical space (S™, @y, S).
Then it holds

P,JA]=Px[A]=P[X € 4], AecF.
So, without loss of generality, it is therefore enough to consider time-homogeneous Markov chains on the

canonical space. ¢

Throughout this Chapter we always consider a time homogeneous Markov chain on the canonical space!
Hence, from now on, X denotes the canonical process on (€2, F) = (S0, @y, S).
We define the shift-operator
Os: 2 — Q
W= () > Oy(w) = (i)

Theorem 3.6 (Markov property). Let H be a bounded random variable. Then
E, [H - 0,|F] = Ex, [H]

where

EXt [H] = Z Ew [H] 1{Xt:CE}
zeS

and E,, is the expectation under the measure P, = Ps_ given by the Markov chain starting at time 0 from
x with probability 1.5

Proof. Since Ex, [H] = 3° g Ey[H]1{x,=), it follows that Ex, [H] is F;-measurable. So we just
have to show that for every A € F, it holds

E,[1uH 06, = E, [14Ex,[H]] .

¥Thatis P[X¢ = z] = 1 and P[Xo = y] = 0 forevery y # z.
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Step 1: We consider in this step bounded random variable H of the form H = 15 where B = {X, =
Yoy .-, Xs =Yyst € Fforyg,...,ys € S whereby s is an arbitrary time.

Starting with A = {Xo = 20, X1 = z1,...,X; = a4} € F; for zg,...,x¢ € S, we have on the one
hand

Eu[lAHet]—P [Aﬂ{Xt—y07...,Xt+S:$S}}
:P [X()—ZL'(),...,XtZZL't,Xt:yo,...,XtJrs:ys}
= 0y (yO)MTO *Pxozy " Pri_1zePyoyr " Pys—1ys
where d,, (yo) = 1 if 2; = yo and 0 otherwise. On the other hand, it holds
E# [1AEXt [HH = Eu [1{X0:$07--~7Xt=xt}EXt [H” = Eu [1{X0=3307~--7Xt:751,}Ezt [H”

= Eu []-{Xg:mo ..... Xt::Et}P:L’t [XO =Y0,--- 7Xt = yt]]
:PM[X()::EO’"'aXt :zt}Pff [XO :y07"'7Xt:yt]

= Hao " Pxozy * " Pxy— l-Lt(S-Lf(yO)pyOyl © Pys_a1ys
Showing that E,, [1 4 H - 6] for every A of the form A = {X¢ = zo, X1 = 1,..., X = 24 }.

However, every set A € F; is a countable disjoint union of sets (A™) of the form {Xy = z(, X; =
Z1,...,X: = z¢}. Hence, by dominated convergence, it follows that

Bu[laHo6)) =Y E,[la,Hob] =) E,[la,Ex,[H] = E,[1aEx,[H]]
for every A € F; showing the assertion in the case where H = 1.

Step 2: Every positive bounded random variable H is the increasing limit of simple functions H™ of the
form H" =, aplpy where af € R, and each By is of the form {Xo = yo,..., Xs = ys}.
Hence, by monotone convergence, for every A € F; it holds from the previous point that

E,[1aH o 0;] = 11312 apEy [1alpy 06,] = hinz AR E, [LaEx,[1p:]] = E, [LaEx, [H]|
k=1 k=1

showing that for every bounded positive random variable, it holds
E“ [HO 9t|ft] = EXt [H] .

The general case of bounded random variables follows from applying the positive case to HT and H~
and taking the difference. O

Theorem 3.7 (Chapman-Kolmogorov). For every two times s and t as well as every two states x and z
in S, it holds
Py [Xips =2 =Y Pp[X; =y Py [X, = 7]
yeS

Proof. By Theorem 3.6 we get

PolXers = 21 = By [Lixy =] = Bu [Bo [Lix, oo z}lftﬂ

= B, By [1(x._.y 0 0lFi]] = Bu [Ex, [Lix.=5y]] = D B [Ey [1{x.=2)] Lixi=y)]
yeSs
= ZEx [1ix,2y}] By [1{x.=21] Z P [Xe =yl P)[Xs=2]. O
yeSsS yeSs
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Remark 3.8 (a repetition on Markov chains). Given a time homogeneous Markov Chain, we define per
induction*’

1 . . 2 . E ko E k—1
pq:y A p£y7 pa:y A p.’I:szya M ] pajy A pxz pzya
z€S z€S

so that
Pu[X: = y|Xo = 2] = pg,

and by Chapman-Kolmogorov, it holds

z€S .

Theorem 3.9 (strong Markov property). Let H be a bounded random variable and T be a stopping
time. Then it holds
Lir<oo} B [H o7 |F7] = lircoo} Bx, [H].

Proof. Forevery A € F, we get by Theorem 3.6 and the fact that AN {7 =t} € F; forevery t,
By [1alreoyHo0:] =Y " E, [1al{r— H 0 60;]
t
= ZEN (1al{r—y Ex, [H]] = B, [1al{r<o} Ex, [H]] |
t
The claim follows. ]

3.1. Recurrence and transience

We are still considering a time homogeneous Markov chain with start distribution & and transition prob-
ability p on the canonical space.

Definition 3.10. Given y € S, define recursively

T, =0, Ty:Tylzzinf{t>7'5:Xt:y}, ey T?f::inf{t>7'f_1:Xt:y},

Here Tf denotes the k-th return time to the state y.
We further denote by
Pay = Py [1y < 9]

the probability that starting from x, the Markov chain visit the state y at least once. We say that a time
homogeneous Markov chain is

* recurrent: if py, = 1;
e transient: if pg, < 1.

Theorem 3.11. For x,y € S, it holds

k—1

Pw[Tgf < 00| = Paypyy -

40Be aware that pﬁy is not pzy to the power k.

54



Proof. We show it per induction. Per definition, it holds P, [Tyl < 00] = pgy. Suppose therefore that the
claim holds forevery I = 1,. ..,k — 1 and we show it for k. Define 7 = 7%~! and H := 17, <00} Since

Y

{qu < oo} = {7, 00; < oo}, we get that 1;, .} is bounded and F,-measurable. Using the strong

Markov property, Theorem 3.9, it follows that

PI[T; < o0) = Pylry 08, <o) = E, [1{7<o0)(H 06;)]

=FE, [1{T<OO}ELE [H © GT“FTH =FE, [1{fr<oo}EXT [H]] =FE, [1{T<oo}Py[Ty < OOH

= pnyw[Tg]j_l <o) = Pyypwyplgj;Q = pwyplgj;l- 0

Remark 3.12. It holds

Nren{TF < 0o} = {X; = « for infinitely many time ¢} = limsup{X; = x}.

If y is recurrent it holds P, [7F < oo] = p,, = 1 so that P, [limsup{X; = z}] = 1. ¢

For y € S we define
Ny = zt: Lixi=y)>
counting how often X visits in the state y.
Theorem 3.13. For x € S, it holds
(i) @ is recurrent implies E{N;] = oo.
(ii) y € S is transient implies E,[Ny| = pzy /(1 — pyy) < 0.
In particular, x is recurrent if and only if E,[N,] = co.

Proof. (i) If x is recurrent, it holds

Ey[No] =D Pu[Na >kl =) Pfrf <oo]=) pf,=> 1=0c

keN keN keN

(ii) If y is transient, then by Theorem 3.11 we obtain

EL[N,] = ZPx{Ny > k] = ZPI[TJ <o) = ZpryPZ;1
keN keN keN

keN

1
= Ppy——. O
pyl_pyy

Theorem 3.14. Let x and y be two states in S, where x is recurrent and py, > 0. Then y is recurrent

and py, = 1.

Proof. Let us first show that p,, = 1. Since z is recurrent, it follows that 7, (w) < oo for almost all
w € €. Hence, for almost all w € 2 such that 7,(w) < oo we get 7, 0 0, (w) < oco. Thus with

H :=1{;,—cy, Theorem 3.9, and the fact that X, =y, we get

0= PZL[TZ/ < 00, Ty O aTy = OO] =FE, |:1{Ty<oo}1{‘rl.09.,y:oo}:| =FE, [l{Ty<oo}Ex [H © 97y|-FTy]]

= E:z |:1{‘ry<oo}EX.,y [H]i| = Ea: [1{7y<oo}Py[Tw

Since p,,, > 0, it must be that p,; = 1.
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Let us finally show that y is recurrent. Let ¢ and j be two states in S and k£ € N. Then by Theorem 3.7
and an induction we get P;[ X = j] = pfj, see Remark 3.8. Since p,, > 0 and p,; > 0, there exist
ki, ks € NWlthp >0 andp > 0. By Theorem 3.7 we get

+t+k
pyl 22> pyzpz'rpry

so that

By [N,] = Z Xe =yl = Zpyy = Zpy:cpmpwy
t
=Py <Zp;x> phy = i3 B [N] pfy, = 0.

teN

Theorem 3.13 implies that y is recurrent. (|
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