3. Markov Chain

We consider a countable state space S with σ -algebra $\mathcal{S} := \sigma(S)$.

Definition 3.1. Given a filtration $\mathbb{F} = (\mathcal{F}_t)$ on a probability space (Ω, \mathcal{F}, P) , we call a process X with values in S a *Markov chain*, if

- (i) X is adapted,
- (ii) $P[X_{t+1} \in B | \mathcal{F}_t] = P[X_{t+1} \in B | X_t]$ for all t and $B \in \mathcal{S}$.

The property (*ii*) is called the Markov property. A Markov chain is called *time-homogeneous*, if

$$P[X_{t+1} \in B | X_t = x] = P[X_1 \in B | X_0 = x]$$

holds for all $x \in S$, $B \in S$ and t.

For a time-homogeneous Markov chain we define

$$\mu_x := P[X_0 = x], p_{xy} := P[X_{t+1} = y | X_t = x]$$

for $x, y \in S$. The initial distribution $\mu := (\mu_x)_{x \in S}$ is a random vector, that is, it holds $\sum_{x \in S} \mu_x = 1$. We call p_{ij} the transition probability from x to y. The transition matrix $p = (p_{xy})_{x,y \in S}$ is a stochastic matrix, that is $\sum_{y \in S} p_{xy} = 1$ for all $x \in S$.

Example 3.2. Let $S = \{1, 2, 3\}$ and $\mu := \delta_1$.

We obtain

$$p = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 1/4 & 1/4 \\ 2/3 & 1/3 & 0 \end{pmatrix}.$$

Example 3.3 (random walk). Let Y be a stochastic process of independent random variables with values in \mathbb{Z}^d . Define $X_t := \sum_{s=0}^t Y_t$ and $\mathcal{F}_t := \sigma(X_s : s \le t)$. For $y \in \mathbb{Z}^d$, it holds

$$P[X_{t+1} = y|\mathcal{F}_t] = P[Y_{t+1} = y - X_t|\mathcal{F}_t] = \sum_{x \in \mathbb{Z}^d} P[Y_{t+1} = y - x|\mathcal{F}_t] \mathbf{1}_{\{X_t = x\}}$$
$$= \sum_{x \in \mathbb{Z}^d} P[Y_{t+1} = y - x] \mathbf{1}_{\{X_t = x\}} = \sum_{x \in \mathbb{Z}^d} P[Y_{t+1} = y - x|X_t] \mathbf{1}_{\{X_t = x\}}$$
$$= P[Y_{t+1} = y - X_t|X_t] = P[X_{t+1} = y|X_t].$$

Hence, for $B \subseteq \mathbb{Z}^d$, by monotone convergence we get

$$P[X_{t+1} \in B | \mathcal{F}_t] = \sum_{y \in \mathbb{Z}^d} P[X_{t+1} = y | \mathcal{F}_t] = \sum_{y \in \mathbb{Z}^d} P[X_{t+1} = y | X_t] = P[X_{t+1} \in B | X_t]$$

Therefore, X is a Markov chain. Suppose furthermore, that the process Y is identically distributed, then it holds

$$P[X_{t+1} = y|X_t = x] = P[Y_t = y - x|X_t = x] = P[Y_1 = y - x] = P[X_1 = y|X_0 = x]$$

 \Diamond

Therefore, it is in that case time-homogeneous.

Given a stochastic vector μ and a stochastic matrix p, the question is whether there exists a probability space $(\Omega, \mathcal{F}, P_{\mu})$, a filtration \mathbb{F} and a stochastic process X such that X is a time-homogeneous Markov chain with start distribution μ and transition probability p. To do so, we define

- $\Omega = S^{\mathbb{N}_0} = \{ \omega = (\omega_t) \colon \omega_t \in S \};$
- $\mathcal{F} = \otimes_{t \in \mathbb{N}_0} \mathcal{S};$
- X as being the canonical process, that is

$$X_t(\omega) = \omega_t, \quad \omega = (\omega_t) \in \Omega$$

• \mathbb{F} being the filtration generated by *X*, that is

$$\mathcal{F}_t = \sigma(X_s \colon s \le t)$$

The product σ -algebra \mathcal{F} is generated by the semi-ring of finite product cylinders

$$A = A_0 \times \dots \times A_t \times S \times S \times \dots = \{X_0 \in A_0, X_1 \in A_1, \dots, X_t \in A_t\}, \quad A_s \in \mathcal{S}.$$

We define the function $P_{\mu} : \mathcal{R} \to [0, 1]$ as follows

$$P_{\mu}[A] := \sum_{x_0 \in A_0, \cdots, x_t \in A_t} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t}$$

This function is well defined. Indeed, let

$$A = A_0 \times \ldots \times A_t \times S \times S \times \ldots$$
 and $B = B_0 \times \ldots \times B_s \times S \times S \ldots$

be such that A = B and without loss of generality, suppose that $s \le t$. It follows that $A_u = B_u$ for every $u \le s$ and $A_u = S$ for u = s + 1, ..., t. Hence, since p is a stochastic matrix, it follows that

$$P_{\mu}[A] = \sum_{x_0 \in A_0, \cdots, x_t \in A_t} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t}$$
$$= \sum_{x_0 \in A_0, \cdots, x_s \in A_s} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{s-1} x_s} \left(\sum_{x_{s+1} \in S, \cdots, x_t \in S} p_{x_s x_{s+1}} \cdots p_{x_{t-1} x_t} \right)$$
$$= \sum_{x_0 \in A_0, \cdots, x_s \in A_s} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{s-1} x_s} = P_{\mu}[B]$$

Clearly, $P[\emptyset] = 0$ and since μ is a stochastic vector, it holds for $A_0 = S$

$$P_{\mu}[\Omega] = P[A_0 \times S \times S \times \cdots] = \sum_{x_0 \in S} \mu_{x_0} = 1$$

Let us show that P_{μ} is additive by taking a pairwise disjoint finite family $(A^k)_{k \leq n}$ of elements in \mathcal{R} such that $A = \bigcup_{k \leq n} A^k$ is also in \mathcal{R} . Denote by t the maximal dimension of the $(A^k)_{k \leq n}$ and A. By definition, it follows from the disjointness of the (A^k) that

$$P_{\mu}[A] = \sum_{x_0 \in A_0, \cdots, x_t \in A_t} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t} = \sum_{\omega \in A = \bigcup_{k \le n} A^k} \mu_{\omega_0} p_{\omega_0, \omega_1} \cdots p_{\omega_{t-1} \omega_t}$$
$$= \sum_{k \le n} \sum_{\omega \in A^k} \mu_{\omega_0} p_{\omega_0, \omega_1} \cdots p_{\omega_{t-1} \omega_t} = \sum_{k \le n} \sum_{x_0 \in A^k_0, \dots, x_t \in A^k_t} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t} = \sum_{k \le n} P_{\mu}[A^k]$$

Hence P_{μ} is finitely additive. We can therefore extend this measure to the ring C generated by the semiring \mathcal{R} . Indeed, as mentioned after the Definition 1.33, C is given by

$$\mathcal{C} = \left\{ \bigcup_{k < n} A^k \colon A^1, \dots, A^n \in \mathcal{R} \text{ pairwise disjoint} \right\}.$$

Therefore as mentioned after Definition 1.34, we can extend the function P_{μ} to C as follows

$$P_{\mu}[A] := \sum_{k=1}^{n} P\left[A^{k}\right], \quad A = \bigcup_{k \le n} A^{k}, A^{1}, \dots, A^{n} \text{ disjoints elements in } \mathcal{R}$$

You can also check that $P_{\mu} : \mathcal{C} \to [0, 1]$ is well defined and inherits the properties $P_{\mu}[\emptyset] = 0$, $P_{\mu}[\Omega] = 1$ and additivity. Since \mathcal{C} is in particular a semi-ring, we just have to show that P_{μ} is σ -additive. However, \mathcal{C} being a ring, we can apply Lemma 1.36, that tells that σ -additivity is is equivalent to continuity at \emptyset . In other terms we have to show that if (A^n) is a decreasing sequence of sets in \mathcal{C} such that $\lim A^n =$ $\cap A^n = \emptyset$, then it follows that $P_{\mu}[A^n] \to 0$. Suppose by contradiction that $P_{\mu}[A^n] > \varepsilon > 0$ for every n. Since each A^n is a finite disjoint union of elements in \mathcal{R} , there exists t^n for every n such that after the coordinate t^n , A^n is the infinite product of S. Without loss of generality, up to re-indexing or adding some new sets, we can assume also that $t_n = n$. For ease of notations, given a set $A \subseteq \Omega$, we denote by A_k the projection of the first k + 1 coordinates, so that it holds for instance³⁸

$$A^n = A^n_n \times S \times S \times S$$

And reciprocally, for a set $A_n \subseteq \prod_{k=0}^n S$, we denote by $A := A_n \times S \times S \cdots$. Since the state space $\prod_{k=0}^n S$ is countable and $P_{\mu}[A^n] = P_{\mu}[A_n^n \times S \times S \times \cdots] \ge \varepsilon$, it follows that we can choose a non-empty finite set $K_n^n \subseteq A_n^n$ such that

$$P_{\mu}[A^n \setminus K^n] = P_{\mu}[(A_n^n \setminus K_n^n) \times S \times S \times \cdots] \le \varepsilon/2^{n+1}$$

by the definition of P_{μ} . It follows that

$$P_{\mu}[K^{n}] = P_{\mu}[K_{n}^{n} \times S \times S \times \dots] \ge \varepsilon - \varepsilon/2^{n+1}$$

Now we define the sequence $\tilde{K}^n = \bigcap_{k=0}^n K^k$ which is a decreasing sequence per definition. Furthermore it holds

$$P_{\mu}[A^n \setminus \tilde{K}^n] = P_{\mu}\left[\left(\cap_{k=0}^n A^k\right) \setminus \left(\cap_{k=0}^n K^k\right)\right] \le \sum_{k=0}^n P_{\mu}\left[A^k \setminus K^k\right] \le \varepsilon \sum_{k=0}^n 2^{-(k+1)} \le \varepsilon/2$$

³⁸Indeed, after n, A^n is the infinite product of S.

Hence

$$P\left[\tilde{K}^{n}\right] = P_{\mu}\left[A^{n}\right] - P_{\mu}\left[A^{n} \setminus \tilde{K}^{n}\right] \ge \varepsilon - \varepsilon/2 = \varepsilon/2$$

for every *n*. However, since \tilde{K}_0^n is finite, decreasing and $P_{\mu}[\tilde{K}_0^n \times S \times S \times \cdots] \ge P_{\mu}[\tilde{K}^n] \ge \varepsilon > 2$, it follows that there must exists $\omega_0 \in \tilde{K}_n^0$ for every *n*. The same argumentation for \tilde{K}_1^n , shows that there must exists ω_1 such that $(\omega_0, \omega_1) \in \tilde{K}_1^n$ for every *n*. Doing so, construct a sequence $\omega = (\omega_0, \omega_1, \ldots) \in$ Ω such that $(\omega_0, \omega_1, \ldots, \omega_n) \in \tilde{K}_n^n$ for every *n*. Since $\tilde{K}^n = \tilde{K}_n^n \times S \times S \times \ldots$, it follows that $\omega \in \tilde{K}^n$ for every *n*, which contradicts however the emptyness of $\cap \tilde{K}^n$. Hence, P_{μ} is σ -additive. This argumentation allows to show the following proposition.

Proposition 3.4. Let μ be a probability vector and p a probability matrix with values in \mathbb{R}^S . Then there exists a probability measure P_{μ} on (Ω, \mathcal{F}) where $\Omega = S^{\mathbb{N}_0}$, $\mathcal{F} = \bigotimes_{\mathbb{N}_0} S$ such that the canonical process X given by

$$X_t(\omega) = \omega_t, \quad \omega = (\omega_t) \in \Omega$$

is a time-homegeneous Markov chain under P_{μ} with initial distribution μ and transition probability p in its own filtration \mathbb{F} given by

$$\mathcal{F}_t = \sigma \left(X_s \colon s \le t \right)$$

Proof. We already constructed the probability measure P_{μ} , we are left to show that X is a time-homogeneous Markov chain under P_{μ} with initial distribution μ and transition probability p in its own filtration \mathbb{F} . Adaptiveness of X follows immediately. As for the Markov and time homogenity property, on the one hand it holds

$$P_{\mu} [X_{t+1} = x_{t+1} | X_t = x_t, \dots, X_0 = x_0] = \frac{P_{\mu} [X_{t+1} = x_{t+1}, X_t = x_t, \dots, X_0 = x_0]}{P_{\mu} [X_t = x_t, \dots, X_0 = x_0]} = \frac{\mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t} p_{x_t, x_{t+1}}}{\mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-1} x_t}} = p_{x_t x_{t+1}}$$

whereas

$$P_{\mu} [X_{t+1} = x_{t+1} | X_t = x_t] = \frac{P_{\mu} [X_{t+1} = x_{t+1}, X_t = x_t]}{P_{\mu} [X_t = x_t]} = \frac{P_{\mu} [X_{t+1} = x_{t+1}, X_t = x_t, X_{t-1} \in S, \dots, X_0 \in S]}{P_{\mu} [X_t = x_t, X_{t-1} \in S, \dots, X_0 \in S]} = \frac{\left(\sum_{x_0 \in S, \dots, x_{t-1} \in S} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-2} x_{t-1}}\right) p_{x_{t-1} x_t} p_{x_t, x_{t+1}}}{\left(\sum_{x_0 \in S, \dots, x_{t-1} \in S} \mu_{x_0} p_{x_0 x_1} \cdots p_{x_{t-2} x_{t-1}}\right) p_{x_{t-1} x_t}} = p_{x_t x_{t+1}}$$

showing that

$$P_{\mu}\left[X_{t+1} = x_{t+1} | X_t = x_t, \dots, X_0 = x_0\right] = P_{\mu}\left[X_{t+1} = x_{t+1} | X_t = x_t\right] = P_{\mu}\left[X_1 = x_{t+1} | X_0 = x_t\right]$$

and therefore the time-homogeneity property. As for the Markov property, by monotone convergence, it

holds

$$\begin{split} P_{\mu}\left[X_{t+1} \in A | \mathcal{F}_{t}\right] &= \sum_{x_{0}, \dots, x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}, \dots, X_{0} = x_{0}\right] \mathbf{1}_{\{X_{t} = x_{t}, \dots, X_{0} = x_{0}\}} \\ &= \sum_{x_{t+1} \in B} \sum_{x_{0}, \dots, x_{t} \in S} P_{\mu}\left[X_{t+1} = x_{t+1} | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}, \dots, X_{0} = x_{0}\}} \\ &= \sum_{x_{t+1} \in B} \sum_{x_{0}, \dots, x_{t} \in S} P_{\mu}\left[X_{t+1} = x_{t+1} | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}, \dots, X_{0} = x_{0}\}} \\ &= \sum_{x_{0}, \dots, x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} \left(\sum_{x_{0}, \dots, x_{t-1} \in S} \mathbf{1}_{\{X_{t-1} = x_{t-1}, \dots, X_{0} = x_{0}\}}\right) \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} \left(\sum_{x_{0}, \dots, x_{t-1} \in S} \mathbf{1}_{\{X_{t-1} = x_{t-1}, \dots, X_{0} = x_{0}\}}\right) \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t+1} \in B | X_{t} = x_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t+1} \in B | X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t} = X_{t}\right] \mathbf{1}_{\{X_{t} = x_{t}\}} = P_{\mu}\left[X_{t} = X_{t}\right] \\ \\ &= \sum_{x_{t} \in S} P_{\mu}\left[X_{t} = X_{t}\right] \mathbf{1}_{\{X_{t} = X_{t}\}} = P_{\mu}\left[X_{t} = X_{t}\right]$$

which ends the proof.

Remark 3.5. For a time-homogeneous Markov chain X on some arbitrary filtrated probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ with values in S, start distribution $\mu_x = P[X_0 = x]$ and transition probability $p_{xy} =$ $P[X_{t+1} = y | X_t = x]$ let P_{μ} denote the respective probability measure on the canonical space $(S^{\mathbb{N}_0}, \otimes_{\mathbb{N}_0} S)$. Then it holds

$$P_{\mu}[A] = P_X[A] = P[X \in A], \quad A \in \mathcal{F}.$$

So, without loss of generality, it is therefore enough to consider time-homogeneous Markov chains on the canonical space.

Throughout this Chapter we always consider a time homogeneous Markov chain on the canonical space! Hence, from now on, X denotes the canonical process on $(\Omega, \mathcal{F}) = (S^{\mathbb{N}_0}, \otimes_{\mathbb{N}_0} \mathcal{S}).$ We define the shift-operator

$$\begin{array}{l} \theta_s \colon \Omega \longrightarrow \Omega \\ \omega = (\omega_t) \longmapsto \theta_s(\omega) = (\omega_{t+s}) \end{array}$$

Theorem 3.6 (Markov property). Let H be a bounded random variable. Then

$$E_{\mu}\left[H\cdot\theta_{t}|\mathcal{F}_{t}\right]=E_{X_{t}}\left[H\right]$$

where

$$E_{X_t}[H] = \sum_{x \in S} E_x [H] \mathbf{1}_{\{X_t = x\}}$$

and E_x is the expectation under the measure $P_x = P_{\delta_x}$ given by the Markov chain starting at time 0 from x with probability 1.39

Proof. Since $E_{X_t}[H] = \sum_{y \in S} E_y[H] \mathbf{1}_{\{X_t = y\}}$, it follows that $E_{X_t}[H]$ is \mathcal{F}_t -measurable. So we just have to show that for every $A \in \mathcal{F}_t$, it holds

$$E_{\mu}\left[1_{A}H \circ \theta_{t}\right] = E_{\mu}\left[1_{A}E_{X_{t}}[H]\right]$$

³⁹That is $P[X_0 = x] = 1$ and $P[X_0 = y] = 0$ for every $y \neq x$.

Step 1: We consider in this step bounded random variable H of the form $H = 1_B$ where $B = \{X_0 = y_0, \ldots, X_s = y_s\} \in \mathcal{F}$ for $y_0, \ldots, y_s \in S$ whereby s is an arbitrary time.

Starting with $A = \{X_0 = x_0, X_1 = x_1, \dots, X_t = x_t\} \in \mathcal{F}_t$ for $x_0, \dots, x_t \in S$, we have on the one hand

$$E_{\mu} [1_{A} H \cdot \theta_{t}] = P_{\mu} [A \cap \{X_{t} = y_{0}, \dots, X_{t+s} = x_{s}\}]$$

= $P_{\mu} [X_{0} = x_{0}, \dots, X_{t} = x_{t}, X_{t} = y_{0}, \dots, X_{t+s} = y_{s}]$
= $\delta_{x_{t}}(y_{0})\mu_{x_{0}} \cdots p_{x_{0}x_{1}} \cdots p_{x_{t-1}x_{t}}p_{y_{0}y_{1}} \cdots p_{y_{s-1}y_{s}}]$

where $\delta_{x_t}(y_0) = 1$ if $x_t = y_0$ and 0 otherwise. On the other hand, it holds

$$E_{\mu} \left[1_{A} E_{X_{t}} \left[H \right] \right] = E_{\mu} \left[1_{\{X_{0} = x_{0}, \dots, X_{t} = x_{t}\}} E_{X_{t}} \left[H \right] \right] = E_{\mu} \left[1_{\{X_{0} = x_{0}, \dots, X_{t} = x_{t}\}} E_{x_{t}} \left[H \right] \right]$$
$$= E_{\mu} \left[1_{\{X_{0} = x_{0}, \dots, X_{t} = x_{t}\}} P_{x_{t}} \left[X_{0} = y_{0}, \dots, X_{t} = y_{t} \right] \right]$$
$$= P_{\mu} \left[X_{0} = x_{0}, \dots, X_{t} = x_{t} \right] P_{x_{t}} \left[X_{0} = y_{0}, \dots, X_{t} = y_{t} \right]$$
$$= \mu_{x_{0}} \cdots p_{x_{0}x_{1}} \cdots p_{x_{t-1}x_{t}} \delta_{x_{t}}(y_{0}) p_{y_{0}y_{1}} \cdots p_{y_{s-1}y_{s}}$$

Showing that $E_{\mu}[1_A H \cdot \theta_t]$ for every A of the form $A = \{X_0 = x_0, X_1 = x_1, \dots, X_t = x_t\}$. However, every set $A \in \mathcal{F}_t$ is a countable disjoint union of sets (A^n) of the form $\{X_0 = x_0, X_1 = x_1, \dots, X_t = x_t\}$. Hence, by dominated convergence, it follows that

$$E_{\mu} [1_{A} H \circ \theta_{t}] = \sum E_{\mu} [1_{A_{n}} H \circ \theta_{t}] = \sum E_{\mu} [1_{A_{n}} E_{X_{t}} [H]] = E_{\mu} [1_{A} E_{X_{t}} [H]]$$

for every $A \in \mathcal{F}_t$ showing the assertion in the case where $H = 1_B$.

Step 2: Every positive bounded random variable H is the increasing limit of simple functions H^n of the form $H^n = \sum_{k \le m_n} \alpha_k^n 1_{B_k^n}$ where $\alpha_k^n \in \mathbb{R}$, and each B_k^n is of the form $\{X_0 = y_0, \ldots, X_s = y_s\}$. Hence, by monotone convergence, for every $A \in \mathcal{F}_t$ it holds from the previous point that

$$E_{\mu}\left[1_{A}H \circ \theta_{t}\right] = \lim_{n} \sum_{k=1}^{n} \alpha_{k}^{n} E_{\mu}\left[1_{A}1_{B_{k}^{n}} \circ \theta_{t}\right] = \lim_{n} \sum_{k=1}^{n} \alpha_{k}^{n} E_{\mu}\left[1_{A}E_{X_{t}}\left[1_{B_{n}^{k}}\right]\right] = E_{\mu}\left[1_{A}E_{X_{t}}\left[H\right]\right]$$

showing that for every bounded positive random variable, it holds

$$E_{\mu}\left[H \circ \theta_t | \mathcal{F}_t\right] = E_{X_t}\left[H\right].$$

The general case of bounded random variables follows from applying the positive case to H^+ and H^- and taking the difference.

Theorem 3.7 (Chapman-Kolmogorov). For every two times s and t as well as every two states x and z in S, it holds

$$P_x [X_{t+s} = z] = \sum_{y \in S} P_x [X_t = y] P_y [X_s = z]$$

Proof. By Theorem 3.6 we get

$$P_{x}[X_{t+s} = z] = E_{x} \left[\mathbb{1}_{\{X_{t+s} = z\}} \right] = E_{x} \left[E_{x} \left[\mathbb{1}_{\{X_{t+s} = z\}} | \mathcal{F}_{t} \right] \right]$$

= $E_{x} \left[E_{x} \left[\mathbb{1}_{\{X_{s=z}\}} \circ \theta_{t} | \mathcal{F}_{t} \right] \right] = E_{x} \left[E_{X_{t}} \left[\mathbb{1}_{\{X_{s} = z\}} \right] \right] = \sum_{y \in S} E_{x} \left[\mathbb{1}_{\{X_{s} = z\}} \right] \mathbb{1}_{\{X_{t} = y\}} \right]$
= $\sum_{y \in S} E_{x} \left[\mathbb{1}_{\{X_{t} = y\}} \right] E_{y} \left[\mathbb{1}_{\{X_{s} = z\}} \right] = \sum_{y \in S} P_{x} \left[X_{t} = y \right] P_{y} \left[X_{s} = z \right].$

Remark 3.8 (a repetition on Markov chains). Given a time homogeneous Markov Chain, we define per induction⁴⁰

$$p_{xy}^1 := p_{xy}; \quad p_{xy}^2 := \sum_{z \in S} p_{xz} p_{zy}, \quad \dots, \quad p_{xy}^k := \sum_{z \in S} p_{xz}^{k-1} p_{zy}, \quad \dots$$

so that

$$P_{\mu}[X_t = y | X_0 = x] = p_{xy}^t$$

and by Chapman-Kolmogorov, it holds

$$p_{ij}^{t+s} = \sum_{z \in S} p_{xz}^s p_{zy}^t. \tag{3.1}$$

Theorem 3.9 (strong Markov property). Let H be a bounded random variable and τ be a stopping time. Then it holds

$$1_{\{\tau < \infty\}} E_{\mu} \left[H \circ_{\tau} | \mathcal{F}_{\tau} \right] = 1_{\{\tau < \infty\}} E_{X_{\tau}} \left[H \right].$$

Proof. For every $A \in \mathcal{F}_{\tau}$ we get by Theorem 3.6 and the fact that $A \cap \{\tau = t\} \in \mathcal{F}_t$ for every t,

$$E_{\mu} \left[1_{A} 1_{\{\tau < \infty\}} H \circ \theta_{\tau} \right] = \sum_{t} E_{\mu} \left[1_{A} 1_{\{\tau = t\}} H \circ \theta_{t} \right]$$
$$= \sum_{t} E_{\mu} \left[1_{A} 1_{\{\tau = t\}} E_{X_{t}} \left[H \right] \right] = E_{\mu} \left[1_{A} 1_{\{\tau < \infty\}} E_{X_{\tau}} \left[H \right] \right],$$

The claim follows.

3.1. Recurrence and transience

We are still considering a time homogeneous Markov chain with start distribution μ and transition probability p on the canonical space.

Definition 3.10. Given $y \in S$, define recursively

$$\tau_y^0 := 0, \quad \tau_y = \tau_y^1 := \inf \left\{ t > \tau_y^0 \colon X_t = y \right\}, \quad \dots, \quad \tau_y^k := \inf \left\{ t > \tau_y^{k-1} \colon X_t = y \right\}, \quad \dots$$

Here τ_y^k denotes the k-th return time to the state y. We further denote by

$$\rho_{xy} := P_x \left[\tau_y < \infty \right]$$

the probability that starting from x, the Markov chain visit the state y at least once. We say that a time homogeneous Markov chain is

- recurrent: if $\rho_{xx} = 1$;
- *transient*: if $\rho_{xx} < 1$.

Theorem 3.11. For $x, y \in S$, it holds

$$P_x[\tau_y^k < \infty] = \rho_{xy}\rho_{yy}^{k-1}.$$

⁴⁰Be aware that p_{xy}^k is not p_{xy} to the power k.

Proof. We show it per induction. Per definition, it holds $P_x[\tau_y^1 < \infty] = \rho_{xy}$. Suppose therefore that the claim holds for every $l = 1, \ldots, k-1$ and we show it for k. Define $\tau = \tau_y^{k-1}$ and $H := 1_{\{\tau_y < \infty\}}$. Since $\{\tau_y^k < \infty\} = \{\tau_y \circ \theta_\tau < \infty\}$, we get that $1_{\{\tau < \infty\}}$ is bounded and \mathcal{F}_{τ} -measurable. Using the strong Markov property, Theorem 3.9, it follows that

$$\begin{aligned} P_x[\tau_y^k < \infty] &= P_x[\tau_y \circ \theta_\tau < \infty] = E_x \left[\mathbf{1}_{\{\tau < \infty\}} (H \circ \theta_\tau) \right] \\ &= E_x \left[\mathbf{1}_{\{\tau < \infty\}} E_x \left[H \circ \theta_\tau | \mathcal{F}_\tau \right] \right] = E_x \left[\mathbf{1}_{\{\tau < \infty\}} E_{X_\tau} \left[H \right] \right] = E_x \left[\mathbf{1}_{\{\tau < \infty\}} P_y[\tau_y < \infty] \right] \\ &= \rho_{yy} P_x[\tau_y^{k-1} < \infty] = \rho_{yy} \rho_{xy} \rho_{yy}^{k-2} = \rho_{xy} \rho_{yy}^{k-1}. \quad \Box \end{aligned}$$

Remark 3.12. It holds

 $\bigcap_{k \in \mathbb{N}} \{\tau_x^k < \infty\} = \{X_t = x \text{ for infinitely many time } t\} = \limsup\{X_t = x\}.$

If y is recurrent it holds $P_x[\tau_x^k < \infty] = \rho_{xx}^t = 1$ so that $P_x[\limsup\{X_t = x\}] = 1$.

For $y \in S$ we define

$$N_y := \sum_t 1_{\{X_t = y\}},$$

counting how often X visits in the state y.

Theorem 3.13. For $x \in S$, it holds

- (i) x is recurrent implies $E[N_x] = \infty$.
- (ii) $y \in S$ is transient implies $E_x[N_y] = \rho_{xy}/(1 \rho_{yy}) < \infty$.

In particular, x is recurrent if and only if $E_x[N_x] = \infty$.

Proof. (i) If x is recurrent, it holds

$$E_x \left[N_x \right] = \sum_{k \in \mathbb{N}} P_x \left[N_x \ge k \right] = \sum_{k \in \mathbb{N}} P_x \left[\tau_x^k < \infty \right] = \sum_{k \in \mathbb{N}} \rho_{xx}^k = \sum_{k \in \mathbb{N}} 1 = \infty$$

(*ii*) If y is transient, then by Theorem 3.11 we obtain

$$E_x[N_y] = \sum_{k \in \mathbb{N}} P_x[N_y \ge k] = \sum_{k \in \mathbb{N}} P_x[\tau_y^k < \infty] = \sum_{k \in \mathbb{N}} \rho_{xy} \rho_{yy}^{k-1} = \rho_{xy} \frac{1}{1 - \rho_{yy}}.$$

Theorem 3.14. Let x and y be two states in S, where x is recurrent and $\rho_{xy} > 0$. Then y is recurrent and $\rho_{yx} = 1$.

Proof. Let us first show that $\rho_{yx} = 1$. Since x is recurrent, it follows that $\tau_x(\omega) < \infty$ for almost all $\omega \in \Omega$. Hence, for almost all $\omega \in \Omega$ such that $\tau_y(\omega) < \infty$ we get $\tau_x \circ \theta_{\tau_y}(\omega) < \infty$. Thus with $H := 1_{\{\tau_x = \infty\}}$, Theorem 3.9, and the fact that $X_{\tau_y} = y$, we get

$$0 = P_x[\tau_y < \infty, \tau_x \circ \theta_{\tau_y} = \infty] = E_x \left[\mathbf{1}_{\{\tau_y < \infty\}} \mathbf{1}_{\{\tau_x \circ \theta_{\tau_y} = \infty\}} \right] = E_x \left[\mathbf{1}_{\{\tau_y < \infty\}} E_x \left[H \circ \theta_{\tau_y} | \mathcal{F}_{\tau_y} \right] \right]$$
$$= E_x \left[\mathbf{1}_{\{\tau_y < \infty\}} E_{X_{\tau_y}} \left[H \right] \right] = E_x \left[\mathbf{1}_{\{\tau_y < \infty\}} P_y[\tau_x = \infty] \right] = \rho_{xy} (1 - \rho_{yx}).$$

Since $\rho_{xy} > 0$, it must be that $\rho_{yx} = 1$.

Let us finally show that y is recurrent. Let i and j be two states in S and $k \in \mathbb{N}$. Then by Theorem 3.7 and an induction we get $P_i[X_k = j] = p_{ij}^k$, see Remark 3.8. Since $\rho_{xy} > 0$ and $\rho_{yx} > 0$, there exist $k_1, k_2 \in \mathbb{N}$ with $p_{xy}^{k_1} > 0$ and $p_{yx}^{k_2} > 0$. By Theorem 3.7 we get

$$p_{yy}^{k_1+t+k_2} \ge p_{yx}^{k_2} p_{xx}^t p_{xy}^{k_1}$$

so that

$$E_{y}[N_{y}] = \sum_{t} P_{y}[X_{t} = y] = \sum_{t} p_{yy}^{t} \ge \sum_{t} p_{yx}^{k_{2}} p_{xx}^{t} p_{xy}^{k_{1}}$$
$$= p_{yx}^{k_{2}} \left(\sum_{t \in \mathbb{N}} p_{xx}^{t}\right) p_{xy}^{k_{1}} = p_{yx}^{k_{2}} E_{x}[N_{x}] p_{xy}^{k_{1}} = \infty.$$

Theorem 3.13 implies that y is recurrent.