
3. Markov Chain
We consider a countable state space S with σ-algebra S := σ(S).

Definition 3.1. Given a filtration F = (Ft) on a probability space (Ω,F , P ), we call a process X with
values in S a Markov chain, if

(i) X is adapted,

(ii) P [Xt+1 ∈ B|Ft] = P [Xt+1 ∈ B|Xt] for all t and B ∈ S .

The property (ii) is called the Markov property.
A Markov chain is called time-homogeneous, if

P [Xt+1 ∈ B|Xt = x] = P [X1 ∈ B|X0 = x]

holds for all x ∈ S, B ∈ S and t.

For a time-homogeneous Markov chain we define

µx := P [X0 = x],

pxy := P [Xt+1 = y|Xt = x]

for x, y ∈ S. The initial distribution µ := (µx)x∈S is a random vector, that is, it holds
�

x∈S µx = 1.
We call pij the transition probability from x to y. The transition matrix p = (pxy)x,y∈S is a stochastic
matrix, that is

�
y∈S pxy = 1 for all x ∈ S.

Example 3.2. Let S = {1, 2, 3} and µ := δ1.
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We obtain

p =




0 1/2 1/2
1/2 1/4 1/4
2/3 1/3 0


 . ♦

Example 3.3 (random walk). Let Y be a stochastic process of independent random variables with val-
ues in Zd. Define Xt :=

�t
s=0 Yt and Ft := σ(Xs : s ≤ t). For y ∈ Zd, it holds

P [Xt+1 = y|Ft] = P [Yt+1 = y −Xt|Ft] =
�

x∈Zd

P [Yt+1 = y − x|Ft]1{Xt=x}

=
�

x∈Zd

P [Yt+1 = y − x]1{Xt=x} =
�

x∈Zd

P [Yt+1 = y − x|Xt]1{Xt=x}

= P [Yt+1 = y −Xt|Xt] = P [Xt+1 = y|Xt].
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Hence, for B ⊆ Zd, by monotone convergence we get

P [Xt+1 ∈ B|Ft] =
�

y∈Zd

P [Xt+1 = y|Ft] =
�

y∈Zd

P [Xt+1 = y|Xt] = P [Xt+1 ∈ B|Xt]

Therefore, X is a Markov chain. Suppose furthermore, that the process Y is identically distributed, then
it holds

P [Xt+1 = y|Xt = x] = P [Yt = y − x|Xt = x] = P [Y1 = y − x] = P [X1 = y|X0 = x]

Therefore, it is in that case time-homogeneous. ♦

Given a stochastic vector µ and a stochastic matrix p, the question is whether there exists a probability
space (Ω,F , Pµ), a filtration F and a stochastic process X such that X is a time-homogeneous Markov
chain with start distribution µ and transition probability p. To do so, we define

• Ω = SN0 = {ω = (ωt) : ωt ∈ S};

• F = ⊗t∈N0
S;

• X as being the canonical process, that is

Xt(ω) = ωt, ω = (ωt) ∈ Ω

• F being the filtration generated by X , that is

Ft = σ(Xs : s ≤ t)

The product σ-algebra F is generated by the semi-ring of finite product cylinders

A = A0 × · · · ×At × S × S × · · · = {X0 ∈ A0, X1 ∈ A1, · · · , Xt ∈ At}, As ∈ S.

We define the function Pµ : R → [0, 1] as follows

Pµ[A] :=
�

x0∈A0,··· ,xt∈At

µx0px0x1 · · · pxt−1xt

This function is well defined. Indeed, let

A = A0 × . . .×At × S × S × . . . and B = B0 × . . .×Bs × S × S . . . .

be such that A = B and without loss of generality, suppose that s ≤ t. It follows that Au = Bu for every
u ≤ s and Au = S for u = s+ 1, . . . , t. Hence, since p is a stochastic matrix, it follows that

Pµ[A] =
�

x0∈A0,··· ,xt∈At

µx0
px0x1

· · · pxt−1xt

=
�

x0∈A0,··· ,xs∈As

µx0px0x1 · · · pxs−1xs


 �

xs+1∈S,··· ,xt∈S

pxsxs+1 · · · pxt−1xt




=
�

x0∈A0,··· ,xs∈As

µx0px0x1 · · · pxs−1xs = Pµ[B]
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Clearly, P [∅] = 0 and since µ is a stochastic vector, it holds for A0 = S

Pµ[Ω] = P [A0 × S × S × · · · ] =
�

x0∈S

µx0
= 1

Let us show that Pµ is additive by taking a pairwise disjoint finite family (Ak)k≤n of elements in R such
that A = ∪k≤nA

k is also in R. Denote by t the maximal dimension of the (Ak)k≤n and A. By definition,
it follows from the disjointness of the (Ak) that

Pµ[A] =
�

x0∈A0,··· ,xt∈At

µx0px0x1 · · · pxt−1xt =
�

ω∈A=∪k≤nAk

µω0pω0,ω1 . . . pωt−1ωt

=
�

k≤n

�

ω∈Ak

µω0
pω0,ω1

. . . pωt−1ωt
=

�

k≤n

�

x0∈Ak
0 ,...,xt∈Ak

t

µx0
px0x1

· · · pxt−1xt
=

�

k≤n

Pµ[A
k]

Hence Pµ is finitely additive. We can therefore extend this measure to the ring C generated by the semi-
ring R. Indeed, as mentioned after the Definition 1.33, C is given by

C =
�
∪k≤nA

k : A1, . . . , An ∈ R pairwise disjoint
�
.

Therefore as mentioned after Definition 1.34, we can extend the function Pµ to C as follows

Pµ[A] :=

n�

k=1

P
�
Ak

�
, A = ∪k≤nA

k, A1, . . . , An disjoints elements in R

You can also check that Pµ : C → [0, 1] is well defined and inherits the properties Pµ[∅] = 0, Pµ[Ω] = 1
and additivity. Since C is in particular a semi-ring, we just have to show that Pµ is σ-additive. However,
C being a ring, we can apply Lemma 1.36, that tells that σ-additivity is is equivalent to continuity at ∅.
In other terms we have to show that if (An) is a decreasing sequence of sets in C such that limAn =
∩An = ∅, then it follows that Pµ[A

n] → 0. Suppose by contradiction that Pµ[A
n] > ε > 0 for every

n. Since each An is a finite disjoint union of elements in R, there exists tn for every n such that after
the coordinate tn, An is the infinite product of S. Without loss of generality, up to re-indexing or adding
some new sets, we can assume also that tn = n. For ease of notations, given a set A ⊆ Ω, we denote by
Ak the projection of the first k + 1 coordinates, so that it holds for instance38

An = An
n × S × S × ·

And reciprocally, for a set An ⊆ �n
k=0 S, we denote by A := An × S × S · · · .

Since the state space
�n

k=0 S is countable and Pµ[A
n] = Pµ[A

n
n × S × S × · · · ] ≥ ε, it follows that we

can choose a non-empty finite set Kn
n ⊆ An

n such that

Pµ[A
n \Kn] = Pµ[(A

n
n \Kn

n )× S × S × · · · ] ≤ ε/2n+1

by the definition of Pµ. It follows that

Pµ[K
n] = Pµ [K

n
n × S × S × . . .] ≥ ε− ε/2n+1

Now we define the sequence K̃n = ∩n
k=0K

k which is a decreasing sequence per definition. Furthermore
it holds

Pµ[A
n \ K̃n] = Pµ

�
(∩n

k=0A
k) \ (∩n

k=0K
k)
�
≤

n�

k=0

Pµ

�
Ak \Kk

�
≤ ε

n�

k=0

2−(k+1) ≤ ε/2

38Indeed, after n, An is the infinite product of S.
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Hence
P
�
K̃n

�
= Pµ [A

n]− Pµ

�
An \ K̃n

�
≥ ε− ε/2 = ε/2

for every n. However, since K̃n
0 is finite, decreasing and Pµ[K̃

n
0 × S × S × · · · ] ≥ Pµ[K̃

n] ≥ ε > 2,
it follows that there must exists ω0 ∈ K̃0

n for every n. The same argumentation for K̃n
1 , shows that there

must exists ω1 such that (ω0,ω1) ∈ K̃n
1 for every n. Doing so, construct a sequence ω = (ω0,ω1, . . .) ∈

Ω such that (ω0,ω1, . . . ,ωn) ∈ K̃n
n for every n. Since K̃n = K̃n

n × S × S × . . ., it follows that ω ∈ K̃n

for every n, which contradicts however the emptyness of ∩K̃n. Hence, Pµ is σ-additive.
This argumentation allows to show the following proposition.

Proposition 3.4. Let µ be a probability vector and p a probability matrix with values in RS . Then there
exists a probability measure Pµ on (Ω,F) where Ω = SN0 , F = ⊗N0

S such that the canonical process
X given by

Xt(ω) = ωt, ω = (ωt) ∈ Ω,

is a time-homegeneous Markov chain under Pµ with initial distribution µ and transition probability p in
its own filtration F given by

Ft = σ (Xs : s ≤ t)

Proof. We already constructed the probability measure Pµ, we are left to show that X is a time-homogeneous
Markov chain under Pµ with initial distribution µ and transition probability p in its own filtration F. Adap-
tiveness of X follows immediately. As for the Markov and time homogenity property, on the one hand it
holds

Pµ [Xt+1 = xt+1|Xt = xt, . . . , X0 = x0]

=
Pµ [Xt+1 = xt+1, Xt = xt, . . . , X0 = x0]

Pµ [Xt = xt, . . . , X0 = x0]
=

µx0px0x1 · · · pxt−1xtpxt,xt+1

µx0
px0x1

· · · pxt−1xt

= pxtxt+1

whereas

Pµ [Xt+1 = xt+1|Xt = xt]

=
Pµ [Xt+1 = xt+1, Xt = xt]

Pµ [Xt = xt]
=

Pµ [Xt+1 = xt+1, Xt = xt, Xt−1 ∈ S, . . . ,X0 ∈ S]

Pµ [Xt = xt, Xt−1 ∈ S . . . ,X0 ∈ S]

=


 �

x0∈S,...,xt−1∈S

µx0
px0x1

· · · pxt−2xt−1


 pxt−1xt

pxt,xt+1


 �

x0∈S,...,xt−1∈S

µx0
px0x1

· · · pxt−2xt−1


 pxt−1xt

= pxtxt+1

showing that

Pµ [Xt+1 = xt+1|Xt = xt, . . . , X0 = x0] = Pµ [Xt+1 = xt+1|Xt = xt] = Pµ [X1 = xt+1|X0 = xt]

and therefore the time-homogeneity property. As for the Markov property, by monotone convergence, it
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holds

Pµ [Xt+1 ∈ A|Ft] =
�

x0,...xt∈S

Pµ [Xt+1 ∈ B|Xt = xt, . . . , X0 = x0] 1{Xt=xt,...,X0=x0}

=
�

xt+1∈B

�

x0,...xt∈S

Pµ [Xt+1 = xt+1|Xt = xt, . . . , X0 = x0] 1{Xt=xt,...,X0=x0}

=
�

xt+1∈B

�

x0,...xt∈S

Pµ [Xt+1 = xt+1|Xt = xt] 1{Xt=xt,...,X0=x0}

=
�

x0,...xt∈S

Pµ [Xt+1 ∈ B|Xt = xt] 1{Xt=xt,...,X0=x0}

=
�

xt∈S

Pµ [Xt+1 ∈ B|Xt = xt] 1{Xt=xt}


 �

x0,...xt−1∈S

1{Xt−1=xt−1,...,X0=x0}




=
�

xt∈S

Pµ [Xt+1 ∈ B|Xt = xt] 1{Xt=xt} = Pµ [Xt+1 ∈ B|Xt]

which ends the proof. �

Remark 3.5. For a time-homogeneous Markov chain X on some arbitrary filtrated probability space
(Ω,F ,F, P ) with values in S, start distribution µx = P [X0 = x] and transition probability pxy =
P [Xt+1 = y|Xt = x] let Pµ denote the respective probability measure on the canonical space (SN0 ,⊗N0

S).
Then it holds

Pµ[A] = PX [A] = P [X ∈ A], A ∈ F .

So, without loss of generality, it is therefore enough to consider time-homogeneous Markov chains on the
canonical space. �

Throughout this Chapter we always consider a time homogeneous Markov chain on the canonical space!
Hence, from now on, X denotes the canonical process on (Ω,F) = (SN0 ,⊗N0

S).
We define the shift-operator

θs : Ω −→ Ω

ω = (ωt) �−→ θs(ω) = (ωt+s)

Theorem 3.6 (Markov property). Let H be a bounded random variable. Then

Eµ [H · θt|Ft] = EXt
[H]

where
EXt [H] =

�

x∈S

Ex [H] 1{Xt=x}

and Ex is the expectation under the measure Px = Pδx given by the Markov chain starting at time 0 from
x with probability 1.39

Proof. Since EXt
[H] =

�
y∈S Ey [H] 1{Xt=y}, it follows that EXt

[H] is Ft-measurable. So we just
have to show that for every A ∈ Ft, it holds

Eµ [1AH ◦ θt] = Eµ [1AEXt
[H]] .

39That is P [X0 = x] = 1 and P [X0 = y] = 0 for every y �= x.
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Step 1: We consider in this step bounded random variable H of the form H = 1B where B = {X0 =
y0, . . . , Xs = ys} ∈ F for y0, . . . , ys ∈ S whereby s is an arbitrary time.

Starting with A = {X0 = x0, X1 = x1, . . . , Xt = xt} ∈ Ft for x0, . . . , xt ∈ S, we have on the one
hand

Eµ [1AH · θt] = Pµ [A ∩ {Xt = y0, . . . , Xt+s = xs}]
= Pµ [X0 = x0, . . . , Xt = xt, Xt = y0, . . . , Xt+s = ys]

= δxt(y0)µx0 · · · px0x1 · · · pxt−1xtpy0y1 · · · pys−1ys

where δxt
(y0) = 1 if xt = y0 and 0 otherwise. On the other hand, it holds

Eµ [1AEXt [H]] = Eµ

�
1{X0=x0,...,Xt=xt}EXt [H]

�
= Eµ

�
1{X0=x0,...,Xt=xt}Ext [H]

�

= Eµ

�
1{X0=x0,...,Xt=xt}Pxt [X0 = y0, . . . , Xt = yt]

�

= Pµ [X0 = x0, . . . , Xt = xt]Pxt [X0 = y0, . . . , Xt = yt]

= µx0 · · · px0x1 · · · pxt−1xtδxt(y0)py0y1 · · · pys−1ys

Showing that Eµ [1AH · θt] for every A of the form A = {X0 = x0, X1 = x1, . . . , Xt = xt}.

However, every set A ∈ Ft is a countable disjoint union of sets (An) of the form {X0 = x0, X1 =
x1, . . . , Xt = xt}. Hence, by dominated convergence, it follows that

Eµ [1AH ◦ θt] =
�

Eµ [1An
H ◦ θt] =

�
Eµ [1An

EXt
[H]] = Eµ [1AEXt

[H]]

for every A ∈ Ft showing the assertion in the case where H = 1B .

Step 2: Every positive bounded random variable H is the increasing limit of simple functions Hn of the
form Hn =

�
k≤mn

αn
k1Bn

k
where αn

k ∈ R, and each Bn
k is of the form {X0 = y0, . . . , Xs = ys}.

Hence, by monotone convergence, for every A ∈ Ft it holds from the previous point that

Eµ [1AH ◦ θt] = lim
n

n�

k=1

αn
kEµ

�
1A1Bn

k
◦ θt

�
= lim

n

n�

k=1

αn
kEµ

�
1AEXt

[1Bk
n
]
�
= Eµ [1AEXt

[H]]

showing that for every bounded positive random variable, it holds

Eµ [H ◦ θt|Ft] = EXt [H] .

The general case of bounded random variables follows from applying the positive case to H+ and H−

and taking the difference. �

Theorem 3.7 (Chapman-Kolmogorov). For every two times s and t as well as every two states x and z
in S, it holds

Px [Xt+s = z] =
�

y∈S

Px [Xt = y]Py [Xs = z]

Proof. By Theorem 3.6 we get

Px[Xt+s = z] = Ex

�
1{Xt+s=z}

�
= Ex

�
Ex

�
1{Xt+s=z}|Ft

��

= Ex

�
Ex

�
1{Xs=z} ◦ θt|Ft

��
= Ex

�
EXt

�
1{Xs=z}

��
=

�

y∈S

Ex

�
Ey

�
1{Xs=z}

�
1{Xt=y}

�

=
�

y∈S

Ex

�
1{Xt=y}

�
Ey

�
1{Xs=z}

�
=

�

y∈S

Px [Xt = y]Py [Xs = z] . �
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Remark 3.8 (a repetition on Markov chains). Given a time homogeneous Markov Chain, we define per
induction40

p1xy := pxy; p2xy :=
�

z∈S

pxzpzy, . . . , pkxy :=
�

z∈S

pk−1
xz pzy, . . .

so that
Pµ[Xt = y|X0 = x] = ptxy

and by Chapman-Kolmogorov, it holds

pt+s
ij =

�

z∈S

psxzp
t
zy. (3.1)

�

Theorem 3.9 (strong Markov property). Let H be a bounded random variable and τ be a stopping
time. Then it holds

1{τ<∞}Eµ [H ◦τ |Fτ ] = 1{τ<∞}EXτ
[H] .

Proof. For every A ∈ Fτ we get by Theorem 3.6 and the fact that A ∩ {τ = t} ∈ Ft for every t,

Eµ

�
1A1{τ<∞}H ◦ θτ

�
=

�

t

Eµ

�
1A1{τ=t}H ◦ θt

�

=
�

t

Eµ

�
1A1{τ=t}EXt [H]

�
= Eµ

�
1A1{τ<∞}EXτ [H]

�
,

The claim follows. �

3.1. Recurrence and transience
We are still considering a time homogeneous Markov chain with start distribution µ and transition prob-
ability p on the canonical space.

Definition 3.10. Given y ∈ S, define recursively

τ0y := 0, τy = τ1y := inf
�
t > τ0y : Xt = y

�
, . . . , τky := inf

�
t > τk−1

y : Xt = y
�
, · · ·

Here τky denotes the k-th return time to the state y.
We further denote by

ρxy := Px [τy < ∞]

the probability that starting from x, the Markov chain visit the state y at least once. We say that a time
homogeneous Markov chain is

• recurrent: if ρxx = 1;

• transient: if ρxx < 1.

Theorem 3.11. For x, y ∈ S, it holds

Px[τ
k
y < ∞] = ρxyρ

k−1
yy .

40Be aware that pkxy is not pxy to the power k.
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Proof. We show it per induction. Per definition, it holds Px[τ
1
y < ∞] = ρxy . Suppose therefore that the

claim holds for every l = 1, . . . , k− 1 and we show it for k. Define τ = τk−1
y and H := 1{τy<∞}. Since

{τky < ∞} = {τy ◦ θτ < ∞}, we get that 1{τ<∞} is bounded and Fτ -measurable. Using the strong
Markov property, Theorem 3.9, it follows that

Px[τ
k
y < ∞] = Px[τy ◦ θτ < ∞] = Ex

�
1{τ<∞}(H ◦ θτ )

�

= Ex

�
1{τ<∞}Ex [H ◦ θτ |Fτ ]

�
= Ex

�
1{τ<∞}EXτ [H]

�
= Ex

�
1{τ<∞}Py[τy < ∞]

�

= ρyyPx[τ
k−1
y < ∞] = ρyyρxyρ

k−2
yy = ρxyρ

k−1
yy . �

Remark 3.12. It holds

∩k∈N{τkx < ∞} = {Xt = x for infinitely many time t} = lim sup{Xt = x}.

If y is recurrent it holds Px[τ
k
x < ∞] = ρtxx = 1 so that Px[lim sup{Xt = x}] = 1. �

For y ∈ S we define
Ny :=

�

t

1{Xt=y},

counting how often X visits in the state y.

Theorem 3.13. For x ∈ S, it holds

(i) x is recurrent implies E[Nx] = ∞.

(ii) y ∈ S is transient implies Ex[Ny] = ρxy/(1− ρyy) < ∞.

In particular, x is recurrent if and only if Ex[Nx] = ∞.

Proof. (i) If x is recurrent, it holds

Ex [Nx] =
�

k∈N
Px[Nx ≥ k] =

�

k∈N
Px[τ

k
x < ∞] =

�

k∈N
ρkxx =

�

k∈N
1 = ∞

(ii) If y is transient, then by Theorem 3.11 we obtain

Ex[Ny] =
�

k∈N
Px[Ny ≥ k] =

�

k∈N
Px[τ

k
y < ∞] =

�

k∈N
ρxyρ

k−1
yy = ρxy

1

1− ρyy
. �

Theorem 3.14. Let x and y be two states in S, where x is recurrent and ρxy > 0. Then y is recurrent
and ρyx = 1.

Proof. Let us first show that ρyx = 1. Since x is recurrent, it follows that τx(ω) < ∞ for almost all
ω ∈ Ω. Hence, for almost all ω ∈ Ω such that τy(ω) < ∞ we get τx ◦ θτy (ω) < ∞. Thus with
H := 1{τx=∞}, Theorem 3.9, and the fact that Xτy = y, we get

0 = Px[τy < ∞, τx ◦ θτy = ∞] = Ex

�
1{τy<∞}1{τx◦θτy=∞}

�
= Ex

�
1{τy<∞}Ex

�
H ◦ θτy |Fτy

��

= Ex

�
1{τy<∞}EXτy

[H]
�
= Ex

�
1{τy<∞}Py[τx = ∞]

�
= ρxy(1− ρyx).

Since ρxy > 0, it must be that ρyx = 1.
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Let us finally show that y is recurrent. Let i and j be two states in S and k ∈ N. Then by Theorem 3.7
and an induction we get Pi[Xk = j] = pkij , see Remark 3.8. Since ρxy > 0 and ρyx > 0, there exist
k1, k2 ∈ N with pk1

xy > 0 and pk2
yx > 0. By Theorem 3.7 we get

pk1+t+k2
yy ≥ pk2

yxp
t
xxp

k1
xy

so that

Ey [Ny] =
�

t

Py[Xt = y] =
�

t

ptyy ≥
�

t

pk2
yxp

t
xxp

k1
xy

= pk2
yx

��

t∈N
ptxx

�
pk1
xy = pk2

yxEx [Nx] p
k1
xy = ∞.

Theorem 3.13 implies that y is recurrent. �
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